Skip to main content
Log in

Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experimental investigation into the dielectric losses in GaAs, InP:Fe, and Si semiconductor crystals in the millimeter wavelength range (80–260 GHz) using the original precise method of measuring the reflectance and dielectric-loss tangent tanδ based on open high-quality Fabry–Perot cavities are presented. It is shown that the losses in the frequency range from 100 to 260 GHz in ultrapure semiconductor single-crystal GaAs substrates are mainly determined by lattice absorption, while the main loss mechanism in single-crystal silicon is absorption by free carriers; herewith, tan δ ≈ (1–2) × 10–4 even for a noticeable, at a level of 1012 cm–3, free carrier concentration. In contrast with GaAs and Si, tanδ in compensated InP:Fe crystals is almost independent of frequency in the range from 100 to 260 GHz, which is associated with the material conductivity and optimization of microwave semiconductor devices, in particular, frequency-multiplication devices and devices of the controlled emission output of continuous and pulsed gyrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, Phys. Med. Biol. 46, R101 (2001).

    Article  ADS  Google Scholar 

  2. N. Dudovich, D. Oron, and Y. Silberberg, Nature (London, U.K.) 418 (6897), 512 (2002).

    Article  ADS  Google Scholar 

  3. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, Nature (London, U.K.) 410 (6824), 60 (2001).

    Article  ADS  Google Scholar 

  4. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quant. Electron. 10, 794 (1971).

    Article  ADS  Google Scholar 

  5. M. Thumm, J. Infrared, Millimeter, Terahertz Waves 41, 1 (2020).

    Article  Google Scholar 

  6. M. Y. Glyavin, G. G. Denisov, V. E. Zapevalov, M. A. Koshelev, M. Y. Tretyakov, and A. I. Tsvetkov, Phys. Usp. 59, 595 (2016).

    Article  ADS  Google Scholar 

  7. T. Idehara, S. P. Sabchevski, M. Glyavin, and S. Mitsudo, Appl. Sci. 10, 980 (2020).

    Article  Google Scholar 

  8. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  9. B. M. Garin, in Proceedings of the ICMWFST’96, 4th International Conference on Millimeter Wave and Far Infrared Science and Technology (Beijing, China, 1996), p. 311.

  10. B. A. Andreev, T. V. Kotereva, V. V. Parshin, V. B. Shmagin, and R. Heidinger, Inorg. Mater. 33, 1100 (1997).

    Google Scholar 

  11. J. A. Hejase, P. R. Paladhi, and P. P. Chahal, IEEE Trans. Compon. Packaging, Manuf. Technol. 1, 1685 (2011).

    Article  Google Scholar 

  12. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and L. Jensen, IEEE Trans. Microwave Theory Tech. 54, 3995 (2006).

    Article  ADS  Google Scholar 

  13. J. Krupka, J. G. Hartnett, and M. Piersa, Appl. Phys. Lett. 98, 112112 (2011).

    Article  ADS  Google Scholar 

  14. L. N. Alyabyeva, E. S. Zhukova, M. A. Belkin, and B. P. Gorshunov, Sci. Rep. 7, 7360 (2017).

    Article  ADS  Google Scholar 

  15. B. M. Garin, V. V. Parshin, S. E. Myasnikova, and V. G. Ralchenko, Diamond Relat. Mater. 12, 1755 (2003).

    Article  ADS  Google Scholar 

  16. R. Golovashchenko, V. Derkach, and S. Tarapov, Radiofiz. Elektron. 20 (4), 31 (2015).

    Article  Google Scholar 

  17. J. Molla, R. Vila, R. Heidinger, and A. Ibarra, J. Nucl. Mater. 258–263, 1884 (1998).

  18. M. Kulygin and G. Denisov, J. Infrared, Millimeter, Terahertz Waves 33, 638 (2012).

    Article  Google Scholar 

  19. J. F. Picard, S. C. Schaub, G. Rosenzweig, J. C. Stephens, M. A. Shapiro, and R. J. Temkin, Appl. Phys. Lett. 114, 164102 (2019).

    Article  ADS  Google Scholar 

  20. A. A. Vikharev, G. G. Denisov, V. V. Kocharovsky, S. V. Kuzikov, V. V. Parshin, N. Y. Peskov, A. N. Stepanov, D. I. Sobolev, and M. Y. Shmelev, Radiophys. Quant. Electron. 50, 786 (2007).

    Article  ADS  Google Scholar 

  21. O. Madelung, Semiconductors: Data Handbook (Springer, New York, 2003).

    Google Scholar 

  22. V. V. Rumyantsev, K. V. Maremyanin, A. P. Fokin, A. A. Dubinov, V. V. Utochkin, M. Y. Glyavin, N. N. Mikhailov, S. A. Dvoretskii, S. V. Morozov, and V. I. Gavrilenko, Semiconductors 53, 1217 (2019).

    Article  ADS  Google Scholar 

  23. Y. A. Dryagin and V. V. Parshin, Int. J. Infrared Millimeter Waves 13, 1023 (1992).

    Article  ADS  Google Scholar 

  24. A. F. Krupnov, M. Y. Tretyakov, V. V. Parshin, V. N. Shanin, and M. I. Kirillov, Int. J. Infrared Millimeter Waves 20, 1731 (1999).

    Article  Google Scholar 

  25. V. V. Parshin, M. Y. Tretyakov, M. A. Koshelev, and E. A. Serov, Radiophys. Quantum Electron. 52, 525 (2010).

    Article  ADS  Google Scholar 

  26. V. N. Shanin, V. V. Dorovskikh, M. Y. Tretyakov, V. V. Parshin, and A. P. Shkaev, Instrum. Exp. Tech. 46, 798 (2003).

    Article  Google Scholar 

  27. E. V. Koposova, S. E. Myasnikova, V. V. Parshin, and S. N. Vlasov, Diamond Relat. Mater. 11, 1485 (2002).

    Article  ADS  Google Scholar 

  28. A. F. Krupnov, M. Y. Tretyakov, V. V. Parshin, V. N. Shanin, and S. E. Myasnikova, J. Mol. Spectrosc. 202, 107 (2000).

    Article  ADS  Google Scholar 

  29. N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Solids (Oxford Univ. Press, London, 1971).

    Google Scholar 

  30. K. Khirouni, H. Maaref, J. C. Bourgoin, and J. C. Garcia, Mater. Sci. Eng. B 22, 86 (1993).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation, project no. 18-79-10112. The statement of the problem on using semiconductor mirrors in the compression circuit of pulses of megawatt gyrotrons for the high-gradient acceleration of particles and evaluation of the main parameters of semiconductors required to solve this problem are formulated in the Russian Science Foundation project no. 19-79-30071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maremyanin, K.V., Parshin, V.V., Serov, E.A. et al. Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors 54, 1069–1074 (2020). https://doi.org/10.1134/S1063782620090195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090195

Keywords:

Navigation