Skip to main content
Log in

Influence of Heat Treatments on the Properties of ZnO Nanorods Prepared by Hydrothermal Synthesis

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

ZnO nanorods were grown on bare or SiO2-coated Si wafers by the hydrothermal method. The ZnO nanorods were annealed at 200, 400, and 600°C, respectively. The structural, optical, and electrical property variation of the ZnO nanorods with the annealing temperature was investigated by X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and current–voltage measurements. For the ZnO nanorods, compressive strain was detected, which decreased with annealing. Moreover, annealing at 600°C led to nanorod agglomeration. The ZnO nanorods annealed at 400°C exhibited the highest crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. C. Lin, W. C. Huang, and W. C. Tsai, Thin Solid Films 589, 446 (2015).

    Article  ADS  Google Scholar 

  2. W. Tang and J. Wang, Sens. Actuators, B 207, 66 (2015).

    Article  Google Scholar 

  3. T. Xu, G. Wu, G. Zhang, and Y. Hao, Sens. Actuators, A 104, 61 (2003).

    Article  Google Scholar 

  4. A. Sawalha, M. Abu-Abdeen, and A. Sedky, Phys. B (Amsterdam, Neth.) 404, 1316 (2009).

  5. K. Sun, X. Tang, C. Yang, and D. Jin, Ceram. Int. 44, 19597 (2018).

    Article  Google Scholar 

  6. L. Hou, J. L. Mead, S. Wang, and H. Huang, Appl. Surf. Sci. 465, 584 (2019).

    Article  ADS  Google Scholar 

  7. F. H. Rajab, P. Korshed, Z. Liu, T. Wang, and L. Li, Appl. Surf. Sci. 469, 593 (2019).

    Article  ADS  Google Scholar 

  8. A. Kaphle, M. F. Borunda, and P. Hari, Mater. Sci. Semicond. Process. 84, 131 (2018).

    Article  Google Scholar 

  9. A. Saboor, S. M. Shah, and H. Hussain, Mater. Sci. Semicond. Process. 93, 215 (2019).

    Article  Google Scholar 

  10. C. Sui, Z. Lu, and T. Xu, Opt. Mater. 35, 2649 (2013).

    Article  ADS  Google Scholar 

  11. Y. Tao, M. Fu, A. Zhao, D. He, and Y. Wang, J. Alloys Compd. 489, 99 (2010).

    Article  Google Scholar 

  12. S. R. Hejazi, H. R. Hosseini, and M. S. Ghamsari, J. Alloys Compd. 455, 353 (2008).

    Article  Google Scholar 

  13. Y. Sun, R. P. Doherty, J. L. Warren, and M. N. R. Ashfold, Chem. Phys. Lett. 447, 257 (2007).

    Article  ADS  Google Scholar 

  14. M. Rajabi and M. Ghorbani, Sens. Actuators, A 266, 338 (2017).

    Article  Google Scholar 

  15. G. N. Narayanan, R. S. Ganesh, and A. Karthigeyan, Thin Solid Films 598, 39 (2016).

    Article  ADS  Google Scholar 

  16. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Pearson, London, 2014).

    Google Scholar 

  17. T. Terasako, S. Obara, S. Sakaya, M. Tanaka, R. Fukuoka, M. Yagi, J. Nomoto, and T. Yamamoto, Thin Solid Films 669, 141 (2019).

    Article  ADS  Google Scholar 

  18. R. S. Gocalves, P. Barrozo, G. L. Brito, B. C. Viana, and F. Cunha, Thin Solid Films 661, 40 (2018).

    Article  ADS  Google Scholar 

  19. A. A. Othman, M. A. Osman, E. M. M. Ibrahim, and M. A. Ali, Ceram. Int. 43, 527 (2017).

    Article  Google Scholar 

  20. C. Periasamy, R. Prakash, and P. Chakrabarti, J. Mater. Sci. Mater. Electron. 21, 309 (2010).

    Article  Google Scholar 

  21. P. Chang, C. Chien, D. Stichtenoth, and C. Ronning, Appl. Phys. Lett. 99, 113101 (2007).

    Article  ADS  Google Scholar 

  22. Y. H. Yang, X. Y. Chen, Y. Feng, and G. W. Yang, Nano Lett. 7, 3879 (2007).

    Article  ADS  Google Scholar 

  23. M. H. Choi and T. Y. Ma, Mater. Lett. 62, 1835 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunggun Ma.

Ethics declarations

Author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyunggun Ma Influence of Heat Treatments on the Properties of ZnO Nanorods Prepared by Hydrothermal Synthesis. Semiconductors 53, 1811–1816 (2019). https://doi.org/10.1134/S106378261913013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261913013X

Keywords:

Navigation