Skip to main content
Log in

Size Dependence of the Melting Point of Silicon Nanoparticles: Molecular Dynamics and Thermodynamic Simulation

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The size dependence of the melting point of Si nanoparticles is investigated using molecular dynamics and thermodynamic simulation based on the Thomson’s formula. The atomistic modeling data obtained using the Stillinger–Weber potential agree with the results reported by other authors and thermodynamic-simulation data and predict a decrease in the melting point Tm of Si nanoparticles with an increase in their reciprocal radius R–1 according to linear law. The available experimental data predict lower Tm values, including the limiting value \(T_{m}^{{(\infty )}}\), which corresponds to the linear extrapolation of experimental points to R–1 → 0 (to the radius R → ∞); the underestimation is 200–300 K as compared with the reference melting point of silicon (1688 K). It is concluded that the molecular-dynamics data on Tm(R–1) obtained using the Stillinger–Weber potential are more adequate than the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nano-Silicon: Properties, Production, Application, Methods of Research and Control (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  2. R. P. Feynman, Eng. Sci. 23 (5), 22 (1960).

    Google Scholar 

  3. L. Sementa, G. Barcaro S. Monti, and V. Carravetta, Phys. Chem. Chem. Phys. 20, 1707 (2018).

    Article  Google Scholar 

  4. V. M. Samsonov, S. A. Vasil’ev, I. V. Talyzin, and Yu. A. Ryzhkov, JETP Lett. 103, 94 (2016).

    Article  ADS  Google Scholar 

  5. V. M. Samsonov, V. M. Talyzin, and M. V. Samsonov, Tech. Phys. 61, 946 (2016).

    Article  Google Scholar 

  6. V. M. Samsonov, S. A. Vasilyev, and A. G. Bembel, Phys. Met. Metallogr. 117, 749 (2016).

    Article  ADS  Google Scholar 

  7. G. S. Zhdanov, Izv. Akad. Nauk, Ser. Fiz. 41, 1004 (1977).

    Google Scholar 

  8. R. Kofman, P. Cheyssac, Y. Lereach, and A. Stella, Eur. Phys. J. D 9, 441 (1999).

    Article  ADS  Google Scholar 

  9. Yu. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard, J. Chem. Phys. 114, 385 (2001).

    Article  ADS  Google Scholar 

  10. V. M. Samsonov, S. S. Kharechkin, S. L. Gafner, L. V. Redel’, and Yu. Ya. Gafner, Crystallogr. Rep. 54, 526 (2009).

    Article  ADS  Google Scholar 

  11. N. T. T. Hang, Commun. Phys. 24, 207 (2014).

    Article  Google Scholar 

  12. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  ADS  Google Scholar 

  13. G. Barcaro, S. Monti, L. Sementa, and V. Carravetta, J. Chem. Theory Comput. 13, 3854 (2017).

    Article  Google Scholar 

  14. G. Barcaro, S. Monti, L. Sementa, and V. Carravetta, Crystals 7, 54 (2017).

    Article  Google Scholar 

  15. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  ADS  Google Scholar 

  16. S. V. Starikov, N. Yu. Lopanitsyna, D. E. Smirnova, and S. V. Makarov, Comput. Mater. Sci. 142, 303 (2018).

    Article  Google Scholar 

  17. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and V. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  18. W. Thomson, Philos. Mag. 42, 448 (1871).

    Article  Google Scholar 

  19. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  20. N. L. Levshin and E. A. Krylova, Surface Phenomena in the Physics of Phase Transitions in Solids (Mosk. Gos. Univ., Moscow, 2008) [in Russian].

    Google Scholar 

  21. V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  22. V. M. Samsonov and O. A. Mal’kov, Rasplavy 2, 71 (2005).

    Google Scholar 

  23. Ph. Buffat and J.-P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  ADS  Google Scholar 

  24. V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  25. V. M. Samsonov, I. V. Talyzin, S. A. Vasil’ev, and A. Yu. Kartoshkin, in Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, Collection of Articles, Ed. by V. M. Samsonov and N. Yu. Sdobnyakov (Tver. Gos. Univ., Tver’, 2017), No. 9, p. 411 [in Russian].

  26. P. P. Kobeko, Amorphous Substances: Physical and Chemical Properties of Simple and High Molecular Weight Amorphous Bodies (Akad. Nauk SSSR, Moscow, Leningrad, 1952) [in Russian].

    Google Scholar 

  27. K. Suzuki, H. Huzimori, and K. Hashimoto, Amorphous Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  28. V. A. Volodin and A. S. Kachko, Semiconductors 45, 265 (2011).

    Article  ADS  Google Scholar 

  29. M. Hirasawa, T. Orii, and T. Seto, Appl. Phys. Lett. 88, 093119 (2006).

    Article  ADS  Google Scholar 

  30. A. Goldstein. Appl. Phys. A: Mater. 62, 33 (1996).

    Article  ADS  Google Scholar 

  31. Yu. V. Naidich, V. M. Perevertailo, and N. F. Grigorenko, Capillary Phenomena in the Growth and Melting of Crystals (Nauk. Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  32. X. C. Zeng and D. Stroud, J. Phys.: Condens. Matter 1, 1779 (1989).

    ADS  Google Scholar 

  33. Y. Shao and F. Spaepen, J. Appl. Phys. 79, 2981 (1996).

    Article  ADS  Google Scholar 

  34. R. P. Liu, T. Volkmann, and D. M. Herlach, Acta Mater 49, 439 (2001).

    Article  Google Scholar 

  35. Y. W. Tang, J. Wang, and X. C. Zenga, J. Chem. Phys. 124, 236103 (2006).

    Article  ADS  Google Scholar 

  36. T. Ujihara, G. Sazaki, K. Fujiwara, N. Usami, and K. Nakajima, J. Appl. Phys. 90, 750 (2001).

    Article  ADS  Google Scholar 

Download references

FUNDING

This study was carried out at Tver State University and supported by the Russian Foundation for Basic Research, project no. 18-43-690001 and the Ministry of Science and Higher Education of the Russian Federation, state task in the sphere of research activity, project no. 3.5506.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Ethics declarations

The authors maintain that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talyzin, I.V., Samsonov, M.V., Samsonov, V.M. et al. Size Dependence of the Melting Point of Silicon Nanoparticles: Molecular Dynamics and Thermodynamic Simulation. Semiconductors 53, 947–953 (2019). https://doi.org/10.1134/S1063782619070236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619070236

Navigation