Skip to main content
Log in

Thermoelectric Properties of Sb2Te3-Based Nanocomposites with Graphite

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Antimony-telluride-based nanocomposite samples containing different weight fractions of graphite (Sb2Te3 + x% graphite, where x = 0.0, 0.5, 1.0, and 2.5%) are synthesized and studied. The samples are produced by a solid-state reaction with the use of a ball mill. X-ray diffraction measurements show that the Sb2Te3 phase is present in the nanocomposites. All of the diffraction peaks are identified as corresponding to the rhombohedral structure of symmetry \(R\bar {3}m\). No additional peaks related to graphite are observed because of its low content. Moreover, the X-ray data show the insolubility of graphite in Sb2Te3: the peaks related to Sb2Te3 remain unchanged upon the addition of graphite. The thermal conductivity, thermoelectric power, and resistivity of the samples are studied in the temperature range 80 K ≤ T ≤ 320 K. The thermal conductivity k of the nanocomposite decreases several times compared to the thermal conductivity of single-crystal Sb2Te3 and reaches k ≈ 0.95 W m–1 K–1 at x = 0.5%. The parameter k unsteadily depends on the content of graphite. The thermoelectric power of the nanocomposites with graphite at x = 1.0% is higher compared to that of nanostructured Sb2Te3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  2. F. J. DiSalvo, Science (Washington, DC, U. S.) 285, 703 (1999).

    Article  Google Scholar 

  3. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  ADS  Google Scholar 

  4. Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, and J. P. Tu, Appl. Phys. Lett. 92, 143106 (2008).

    Article  ADS  Google Scholar 

  5. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  ADS  Google Scholar 

  6. B. Poudel, Q. Hao, and Y. Ma, Science (Washington, DC, U. S.) 320, 634 (2008).

    Article  ADS  Google Scholar 

  7. D. Das, K. Malik, A. K. Deb, V. A. Kulbachinskii, V. G. Kytin, S. Chatterjee, S. Dhara, S. Bandyopadhyay, and A. Banerjee, Eur. Phys. Lett. 113, 47004 (2016).

    Article  ADS  Google Scholar 

  8. V. A. Kulbachinskii, V. G. Kytin, M. Yu. Popov, S. G. Buga, P. B. Stepanov, and V. D. Blank, J. Solid State Chem. 193, 64 (2012).

    Article  ADS  Google Scholar 

  9. V. A. Kul’bachinskii, A. A. Kudryashov, and V. G. Kytin, Semiconductors 49, 767 (2015).

    Article  ADS  Google Scholar 

  10. V. A. Kul’bachinskii, V. G. Kytin, V. D. Blank, S. G. Buga, and M. Yu. Popov, Semiconductors 45, 1194 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kulbachinskii.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulbachinskii, V.A., Kytin, V.G., Zinoviev, D.A. et al. Thermoelectric Properties of Sb2Te3-Based Nanocomposites with Graphite. Semiconductors 53, 638–640 (2019). https://doi.org/10.1134/S1063782619050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050129

Navigation