Skip to main content
Log in

Emission-Line Width and α-Factor of 850-nm Single-Mode Vertical-Cavity Surface-Emitting Lasers Based on InGaAs/AlGaAs Quantum Wells

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The emission-line width for 850-nm single-mode vertical-cavity surface-emitting lasers based on InGaAs/AlGaAs quantum wells is studied. The width of the emission line for a laser with a 2-μm oxide current aperture attains it minimum (~110 MHz) at an output power of 0.8 mW. As the optical output power is further increased, anomalous broadening of the emission line is observed; this is apparently caused by an increase in the α-factor as a result of a decrease in the differential gain in the active region under conditions of increased concentration of charge carriers and of high internal optical losses in the microcavity. The α-factor is estimated using two independent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).

    Book  Google Scholar 

  2. P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, Proc. SPIE 9001, 900103 (2014).

    Article  Google Scholar 

  3. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, Electron. Lett. 51, 1096 (2015).

    Article  Google Scholar 

  4. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah. J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).

    Article  ADS  Google Scholar 

  5. M. Prouty and A. Miniature, Wide Band Atomic Magnetometer, SERDP Project MR-1568 (Geometrics Inc., 2011).

    Google Scholar 

  6. A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, Proc. SPIE 6908, 69080I (2008).

    Article  ADS  Google Scholar 

  7. L. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 1460 (2004).

    Article  ADS  Google Scholar 

  8. D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, and M. Prouty, Proc. SPIE 6484, 648406 (2007).

    Article  Google Scholar 

  9. D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, Proc. SPIE 7229, 722907 (2009).

    Article  Google Scholar 

  10. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, E. Haglund, A. Larsson, and A. Joel, IEEE J. Quantum Electron. 46, 506 (2010).

    Article  ADS  Google Scholar 

  11. M. A. Bobrov, S. A. Blokhin, N. A. Maleev, A. G. Kuzmenkov, A. A. Blokhin, Yu. M. Zadiranov, S. I. Troshkov, N. N. Ledentsov, and V. M. Ustinov, J. Phys.: Conf. Ser. 643, 012044 (2015).

    Google Scholar 

  12. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, IEEE J. Sel. Top. Quant. Electron. 3, 916 (1997).

    Article  Google Scholar 

  13. M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, Phys. Rev. A 56, 845 (1997).

    Article  ADS  Google Scholar 

  14. F. Monti di Sopra, M. Brunner, and R. Hövel, Photon. Technol. Lett. 14, 1034 (2002).

    Article  ADS  Google Scholar 

  15. A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940 (1958).

    Article  ADS  Google Scholar 

  16. C. H. Henry, IEEE J. Quant. Electron. 18, 259 (1982).

    Article  ADS  Google Scholar 

  17. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  18. N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, Proc. SPIE 8276, 82760K (2012).

    Article  Google Scholar 

  19. D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, Appl. Phys. Lett. 66, 277 (1995).

    Article  ADS  Google Scholar 

  20. L. A. Coldren, S. W. Corzine, and M. L. Mašanovic, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).

    Book  Google Scholar 

  21. G. M. Yang, M. H. Mac Dugal, V. Pudikov, and P. D. Dapkus, Photon. Technol. Lett. 7, 1228 (1995).

    Article  ADS  Google Scholar 

  22. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, Photon. Technol. Lett. 7, 736 (1995).

    Article  ADS  Google Scholar 

  23. A. Bacou, A. Rissons, and J.-C. Mollier, Proc. SPIE 6908, 69080F (2008).

    Article  ADS  Google Scholar 

  24. KU. Krüger and K. Petermann, IEEE J. Quant. Electron. 24, 2355 (1988).

    Article  ADS  Google Scholar 

  25. H. Halbritter, R. Shau, F. Riemenschneider, B. Kögel, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, M.-C. Amann, and P. Meissner, Electron. Lett. 40, 1266 (2004).

    Article  Google Scholar 

  26. K. Kishino, S. Aoki, and Y. Suematsu, J. Quant. Electron. 18, 343 (1982).

    Article  ADS  Google Scholar 

  27. K. Stubkjaer, Y. Suematsu, M. Asada, S. Arai, and A. R. Adams, Electron. Lett. 16, 895 (1980).

    Article  Google Scholar 

  28. M. H. Moloney, J. Hegarty, L. Buydens, P. Demeester, R. Grey, and J. Woodhead, Appl. Phys. Lett. 62, 3327 (1993).

    Article  ADS  Google Scholar 

  29. A. P. Ongstad, D. J. Gallant, and G. C. Dente, Appl. Phys. Lett. 66, 2730 (1995).

    Article  ADS  Google Scholar 

  30. M. Usami, H. Sakata, and Y. Matsushima, in Proceedings of the 19th International Symposium on Gallium Arsenide and Related Compounds, 1992, p.803.

  31. C. H. Wu, F. Tan, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 97, 091103 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Additional information

Original Russian Text © S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasil’ev, Yu.M. Zadiranov, E.A. Evropeytsev, A.V. Sakharov, N.N. Ledentsov, L.Ya. Karachinsky, A.M. Ospennikov, N.A. Maleev, V.M. Ustinov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 1, pp. 98–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Blokhin, A.A. et al. Emission-Line Width and α-Factor of 850-nm Single-Mode Vertical-Cavity Surface-Emitting Lasers Based on InGaAs/AlGaAs Quantum Wells. Semiconductors 52, 93–99 (2018). https://doi.org/10.1134/S1063782618010062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618010062

Navigation