Skip to main content
Log in

Investigation of HgCdTe waveguide structures with quantum wells for long-wavelength stimulated emission

  • XXI International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoluminescence and stimulated emission during interband transitions in quantum wells based on HgCdTe placed in an insulator waveguide based on a wide-gap CdHgTe alloy are studied. Heterostructures with quantum wells based on HgCdTe are of interest for the development of long-wavelength lasers in the range of 25–60 μm, which is currently unattainable for quantum-cascade lasers. Optimal designs of quantum wells for attainment of long-wavelength stimulated emission under optical pumping are discussed. It is shown that narrow quantum wells from pure HgTe appear to be more promising for long-wavelength lasers in comparison with wide (potential) wells from the alloy due to the suppression of Auger recombination. It is demonstrated that molecular-beam epitaxy makes it possible to obtain structures for the localization of radiation with a wavelength of up to 25 μm at a high growth rate. Stimulated emission is obtained for wavelengths of 14–6 μm with a threshold pump intensity in the range of 100–500 W/cm2 at 20 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Vitiello et al., Opt. Express 23, 5167 (2015).

    Article  ADS  Google Scholar 

  2. B. S. Williams, Nat. Photon. 1, 517 (2007).

    Article  ADS  Google Scholar 

  3. M. Bahriz et al., Opt. Express 23, 1523 (2015).

    Article  ADS  Google Scholar 

  4. A. N. Baranov, M. Bahriz, and R. Teissier, Opt. Express 24, 18799 (2016).

    Article  ADS  Google Scholar 

  5. R. Colombelli et al., Appl. Phys. Lett. 78, 2620 (2001).

    Article  ADS  Google Scholar 

  6. K. Ohtani, M. Beck, and J. Faist, Appl. Phys. Lett. 105, 121115 (2014).

    Article  ADS  Google Scholar 

  7. J. Ulrich et al., Appl. Phys. Lett. 80, 3691 (2002).

    Article  ADS  Google Scholar 

  8. L. N. Kurbatov et al., JETP Lett. 37, 499 (1983).

    ADS  Google Scholar 

  9. K. V. Maremyanin et al., Semiconductors 50, 1669 (2016).

    Article  ADS  Google Scholar 

  10. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).

    Article  ADS  Google Scholar 

  11. V. S. Varavin, V.V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Yu. G. Sidorov, A. O. Suslyakov, M.V. Yakushev, and A. L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    Google Scholar 

  12. S. V. Morozov et al., Appl. Phys. Lett. 104, 072102 (2014).

    Article  ADS  Google Scholar 

  13. V. V. Rumyantsev et al., Semicond. Sci. Technol. 28, 125007 (2013).

    Article  ADS  Google Scholar 

  14. S. Dvoretsky et al., J. Electron. Mater. 39, 918 (2010).

    Article  ADS  Google Scholar 

  15. N. N. Mikhailov et al., Int. J. Nanotechnol. 3, 120 (2006).

    Article  ADS  Google Scholar 

  16. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314 (5806), 1757 (2006).

    Article  ADS  Google Scholar 

  17. V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, JETP Lett. 89, 63 (2009).

    Article  ADS  Google Scholar 

  18. S. Boubanga-Tombet et al., Phys. Rev. B 85, 035443 (2012).

    Article  ADS  Google Scholar 

  19. T. Watanabe et al., New J. Phys. 15, 075003 (2013).

    Article  ADS  Google Scholar 

  20. J. Dimmock, I. Melngailis, and A. Strauss, Phys. Rev. Lett. 16, 1193 (1966).

    Article  ADS  Google Scholar 

  21. A. A. Andronov, Yu. N. Nozdrin, A. V. Okomel’kov, A. A. Babenko, V. S. Varavin, D. G. Ikusov, and R. N. Smirnov, Semiconductors 42, 179 (2008).

    Article  ADS  Google Scholar 

  22. A. A. Andronov, Yu. N. Nozdrin, A. V. Okomel’kov, V. S. Varavin, R. N. Smirnov, and D. G. Ikusov, Semiconductors 40, 1266 (2006).

    Article  ADS  Google Scholar 

  23. J. M. Arias et al., Semicond. Sci. Technol. 8, S255 (1993).

    Article  Google Scholar 

  24. J. Bleuse et al., J. Cryst. Growth 197, 529 (1999).

    Article  ADS  Google Scholar 

  25. J. Bonnet-Gamard et al., J. Appl. Phys. 78, 6908 (1995).

    Article  ADS  Google Scholar 

  26. E. Hadji et al., Appl. Phys. Lett. 68, 2480 (1996).

    Article  ADS  Google Scholar 

  27. V. S. Varavin et al., Proc. SPIE 5136, 381 (2003).

    Article  ADS  Google Scholar 

  28. S. V. Morozov et al., Appl. Phys. Lett. 108, 092104 (2016).

    Article  ADS  Google Scholar 

  29. V. V. Rumyantsev, M. A. Fadeev, S. V. Morozov, A. A. Dubinov, K. E. Kudryavtsev, A. M. Kadykov, I.V. Tuzov, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko and F. Teppe, Semiconductors 50, 1651 (2016).

    Article  ADS  Google Scholar 

  30. M. S. Zholudev et al., Nanoscale Res. Lett. 7, 534 (2012).

    Article  ADS  Google Scholar 

  31. A. V. Ikonnikov, A. A. Lastovkin, K. E. Spirin, M. S. Zholudev, V. V. Rumyantsev, K. V. Maremyanin, A. V. Antonov, V. Ya. Aleshkin, V. I. Gavrilenko, S. A. Dvoretskii, N. N. Mikhailov, Yu. G. Sadofyev, and N. Samal, JETP Lett. 92, 756 (2010).

    Article  ADS  Google Scholar 

  32. V. V. Rumyantsev, A. V. Ikonnikov, A. V. Antonov, S. V. Morozov, M. S. Zholudev, K. E. Spirin, V. I. Gavrilenko, S. A. Dvoretskii, and N. N. Mikhailov, Semiconductors 47, 1438 (2013).

    Article  ADS  Google Scholar 

  33. A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).

    Article  ADS  Google Scholar 

  34. S. Ruffenach et al., APL Mater. 5, 035503 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Additional information

Original Russian Text © V.V. Rumyantsev, A.M. Kadykov, M.A. Fadeev, A.A. Dubinov, V.V. Utochkin, N.N. Mikhailov, S.A. Dvoretskii, S.V. Morozov, V.I. Gavrilenko, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 12, pp. 1616–1620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, V.V., Kadykov, A.M., Fadeev, M.A. et al. Investigation of HgCdTe waveguide structures with quantum wells for long-wavelength stimulated emission. Semiconductors 51, 1557–1561 (2017). https://doi.org/10.1134/S106378261712017X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261712017X

Navigation