Skip to main content
Log in

On the role of negative effective masses in the formation of the conductivity of semiconductor superlattices

  • XIX Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 10–14, 2015
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The conditions for forming static and high-frequency negative conductivities of semiconductor superlattices with different fractions of the region of negative effective mass in the miniband are investigated. It is demonstrated that a decrease in the negative-mass fraction leads to broadening of the regions of both the negative differential and negative absolute conductivities of superlattices and to the occurrence of additional harmonic-field instability regions. The development of static instability in a superlattice arranged in an open external dc current circuit can result in the generation of both integrally and fractionally quantized static fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  2. Yu. A. Romanov, Phys. Solid State 45, 559 (2003).

    Article  ADS  Google Scholar 

  3. Yu. A. Romanov and Yu. Yu. Romanova, Phys. Solid State 43, 539 (2001).

    Article  ADS  Google Scholar 

  4. Yu. A. Romanov, J. Yu. Romanova, and L. G. Mourokh, Phys. Rev. B 79, 245320 (2009).

    Article  ADS  Google Scholar 

  5. M. C. Wanke, A. G. Markelz, K. Unterrainer, S. J. Allen, and R. Bhatt, in Physics of Semiconductors, Ed. by N. Scheffter and R. Zimmerman (World Scientific, Singapore, 1996), p. 1791M.

  6. M. C. Wanke, J. S. Scott, S. J. Allen, K. D. Maranowski, and A. C. Gossard, in Proceedings of the SPIE Conference on Terahertz Spectroscopy and Applications, San Jose, California, 1999, Vol. 3617, p. 148.

    Article  ADS  Google Scholar 

  7. J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992).

    Article  ADS  Google Scholar 

  8. Y. Shimada, K. Hirakawa, M. Odnoblioudov, and K. A. Chao, Phys. Rev. Lett. 90, 046806 (2003).

    Article  ADS  Google Scholar 

  9. K. Jin, M. Odnoblyudov, Y. Shimada, K. Hirakawa, and K. A. Chao, Phys. Rev. B 68, 153315 (2003).

    Article  ADS  Google Scholar 

  10. Yu. A. Romanov and Yu. Yu. Romanova, Phys. Solid State 46, 164 (2004).

    Article  ADS  Google Scholar 

  11. J. Yu. Romanova, E. V. Demidov, L. G. Mourokh, and Yu. A. Romanov, J. Phys.: Condens. Matter 23, 305801 (2011).

    Google Scholar 

  12. Yu. Yu. Romanova, M. L. Orlov, and Yu. A. Romanov, Semiconductors 46, 1443 (2012).

    Article  ADS  Google Scholar 

  13. Yu. Yu. Romanova, E. P. Dodin, Yu. N. Nozdrin, A. A. Biryukov, N. V. Baidus’, D. A. Pavlov, and N. V. Malekhonova, Semiconductors 49, 118 (2015).

    Article  ADS  Google Scholar 

  14. Y. Shimada, N. Sekine, and K. Hirakawa, Appl. Phys. Lett. 84, 4926 (2004).

    Article  ADS  Google Scholar 

  15. Y. A. Romanov, J. Y. Romanova, and L. G. Mourokh, J. Appl. Phys. 99, 013707 (2006).

    Article  ADS  Google Scholar 

  16. Yu. Yu. Romanova, Semiconductors 46, 1451 (2012).

    Article  ADS  Google Scholar 

  17. I. V. Altukhov, M. S. Kagan, S. G. Kalashnikov, V. V. Kukushkin, and E. G. Landsberg, Sov. Phys. Semicond. 12, 172 (1978).

    Google Scholar 

  18. Ju. Pozhela, Plasma and Current Instabilities in Semiconductors, Vol. 18 of International Series in the Science of the Solid State (Nauka, Moscow, 1977; Elsevier, Amsterdam, 1981).

    Google Scholar 

  19. T. Ya. Banis, I. V. Parshelyunas, and Ju. K. Pozhela, Sov. Phys. Semicond. 5, 1727 (1971).

    Google Scholar 

  20. B. J. Keay, S. Zenner, S. J. Allen, K. O. Maranovski, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell, Phys. Rev. Lett. 75, 4102 (1995).

    Article  ADS  Google Scholar 

  21. Yu. A. Romanov and Yu. Yu. Romanova, J. Exp. Theor. Phys. 91, 1033 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Romanova.

Additional information

Original Russian Text © Yu.Yu. Romanova, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 12, pp. 1605–1611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, Y.Y. On the role of negative effective masses in the formation of the conductivity of semiconductor superlattices. Semiconductors 49, 1557–1563 (2015). https://doi.org/10.1134/S1063782615120167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615120167

Keywords

Navigation