Skip to main content
Log in

A DFT study of BeX (X = S, Se, Te) semiconductor: Modified Becke Johnson (mBJ) potential

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The electronic, optical and elastic properties of BeX were performed within full potential liberalized augmented plane wave method based on density functional theory (DFT). Generalized gradient approximation (GGA) and modified Becke Johnson (TB-mBJ) potential were used for exchange correlation. The mBJ gives improved band gap as compare to GGA and in close agreement with the experimental results. The present band gaps of BeS, BeSe and BeTe calculated within mBJ are 4.40, 4.0 and 2.40 eV respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. I. Okoye, Eur. Phys. J. B 39, 5 (2004).

    Article  ADS  Google Scholar 

  2. D. Heciri, L. Beldi, S. Drablia, H. Meradji, N. E. Derradji, H. Belkhir, and B. Bouhafs, Comp. Mater. Sci. 38, 609 (2007).

    Article  Google Scholar 

  3. I. Khan, I Ahmad, D. Zhang, H. A. Rahnamaye, and C. J. Asadabadi, J. Phys. Chem. Sol. 74, 181 (2013).

    Article  ADS  Google Scholar 

  4. L. Guo, Ge Hu, S. Zhang, W. Feng, and Z. Zhang, J. Alloys Comp. 561, 16 (2013).

    Article  Google Scholar 

  5. J. C. Phillips and J. A. van Vechten, Phys. Rev. Lett. 23, 1115 (1969).

    Article  ADS  Google Scholar 

  6. B. Bouhafs, H. Aourag, M. Ferhat, and M. Certier, J. Phys.: Condens. Matter 12, 5655 (2000).

    ADS  Google Scholar 

  7. D. J. Stukel, Phys. Rev B 2, 1852 (1970).

    Article  ADS  Google Scholar 

  8. R. L. Sarkar and S. Chatterjee, J. Phys. C 10, 57 (1977).

    Article  ADS  Google Scholar 

  9. M. G. Diaz, P. R. Hernandez, and A. Munoz, Phys. Rev. B 55, 14043 (1997).

    Article  ADS  Google Scholar 

  10. A. Munoz, P. R. Hernandez, and A. Mujica, Phys. Status Solidi 198, 439 (1996).

    Article  Google Scholar 

  11. G. Kalpana, G. Pari, A. Mookerjee, and A. K. Bhattacharyya, Int. J. Mod. Phys. B 12, 1975 (1998).

    Article  ADS  Google Scholar 

  12. A. Fleszar and W. Hanke, Phys. Rev. B 62, 2466 (2000).

    Article  ADS  Google Scholar 

  13. S. Doyen-Lang, O. Pages, L. Lang, and J. Hugel, Phys. Status Solidi B 229, 563 (2002).

    Article  ADS  Google Scholar 

  14. W. M. Yim, J. B. Dismakes, E. J. Stofko, and R. J. Paff, J. Phys. Chem. Sol. 33, 501 (1972).

    Article  ADS  Google Scholar 

  15. J. A. van Vechten, Phys. Rev. 187, 1007 (1969).

    Article  ADS  Google Scholar 

  16. A. Waag, F. Fischer, H. J. Lugauer, Th. Litz, J. Laubender, U. Lunz, U. Zhender, W. Ossau, T. Gerhardt, M. Moller, and G. Landwehr, J. Appl. Phys. 80, 792 (1996).

    Article  ADS  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  18. F. Aryasetiawan and O. Gunnarssson, Rep. Progr. Phys. 61, 237 (1998).

    Article  ADS  Google Scholar 

  19. L. J. Sham and M. Schluter, Phys. Rev. Lett. 51, 1888 (1983).

    Article  ADS  Google Scholar 

  20. A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).

    Article  ADS  Google Scholar 

  21. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

  22. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).

    Article  ADS  Google Scholar 

  23. M. Yousaf, M. A. Saeed, R. Ahmed, M. M. Alsardia, A. Radzi, and A. Shaari, Commun. Theor. Phys. 58, 777 (2012).

    Article  Google Scholar 

  24. R. B. Araujo, J. S. de Almeida, and A. F. da Silva, J. Appl. Phys. 114, 183702 (2013).

    Article  ADS  Google Scholar 

  25. S. D. Guo and B. G. Liu, Europhys. Lett. 93, 47006 (2011).

    Article  ADS  Google Scholar 

  26. W. Al-Sawai, H. Lin, R. S. Markiewicz, L. A. Wray, Y. Xia, S. Y. Xu, M. Z. Hasan, and A. Bansil, Phys. Rev. B 82, 125208 (2010).

    Article  ADS  Google Scholar 

  27. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, Wien2K User’s Guide (Techn. Univ. Wien, Wien, 2008).

    Google Scholar 

  28. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. S. H. Wei and A. Zunger, Phys. Rev. B 53, R10457 (1996).

    Article  ADS  Google Scholar 

  30. R. Khenata et al., Solid State Electron. 50, 1382 (2006).

    Article  ADS  Google Scholar 

  31. I. Ajmad, B. Amin, M. Maqbool, S. Muhammad, G. Murtaza, S. Ali, and A. Noor, Chin. Phys. Lett. 29, 097102 (2012).

    Article  ADS  Google Scholar 

  32. B. Amin, I. Ahmad, M. Maqbool, S. Goumrisaid, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

    Article  ADS  Google Scholar 

  33. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).

    Google Scholar 

  34. M. Fox, Optical Properties of Solids (Oxford, Oxford Univ. Press, 2001).

    Google Scholar 

  35. D. Penn, Phys. Rev. B 128, 2093 (1962).

    Article  ADS  MATH  Google Scholar 

  36. C. Becker et al., in Proceedings of the 23rd International Conference on Physics of Semiconductor (World Scientific, Berlin, Singapore, 1996).

    Google Scholar 

  37. J. Geurts et al., in Proceedings of the 24th International Conference on Physics of Semiconductor (World Scientific, Singapore, Jerusalam, 1998).

    Google Scholar 

  38. V. T. Vergaard and J. W. Hutshinson, J. Am. Ceram. Soc. 71, 157 (1988).

    Article  Google Scholar 

  39. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Stricht, and P. C. Schmidt, Intermettalics 11, 23 (2003).

    Article  Google Scholar 

  40. W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928).

    Google Scholar 

  41. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  MATH  Google Scholar 

  42. W. A. Harisson, Electronic Structures and Properties of Solids (Dover, New York, 1989).

    Google Scholar 

  43. P. H. Mott, J. R. Dorgan, and C. M. Roland, J. Sound Vibrat. 312, 572 (2008).

    Article  ADS  Google Scholar 

  44. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Phys. Status Solidi, Rapid Res. Lett. 3, 89 (2007).

    Article  ADS  Google Scholar 

  45. I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, in Elastic Constantsand Elastic Moduli of Metals and Insulators Handbook, Ed. by I. N. Frantsevich (Naukova Dumka, Kiev, 1983), p. 60 [in Russian].

  46. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Google Scholar 

  47. Xing-Qiu Chen, Haiyang Niu, Dianzhong Li, and Yiyi Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  48. J. J. Gilman, in The Science of Hardness Testing and its Research Applications, Ed. by J. H. Westbrook and H. Conrad (American Society of Metal, Metal Park, Ohio, USA, 1973), Ch. 4.

  49. D. G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  50. P. F. Yuan and Z. J. Ding, Physica B 403, 1996 (2008).

    Article  ADS  Google Scholar 

  51. A. Bouhemadou, R. Khanate, M. Kharoubi, T. Seddik, A. H. Reshak, and Y. A. Douri, Comput. Mater. Sci. 45, 474 (2009).

    Article  Google Scholar 

  52. C. Narayana, V. J. Nesamony, and A. Ruoff, Phys. Rev. B 56, 14338 (1997).

    Article  ADS  Google Scholar 

  53. F. E. H. Hassan and H. Akbarzadeh, Comput. Mater. Sci. 35, 423 (2006).

    Article  Google Scholar 

  54. H. Luo, K. Chandehari, R. G. Green, A. Ruoff, S. S. Trailand, and F. J. di Salvo, Phys. Rev. B 2, 1852 (1970).

    Article  Google Scholar 

  55. J. R. Christman, Fundamentals of Solid State Physics (Wiley, New York, 1988).

    Google Scholar 

  56. O. L. Anderson, J. Phys. Chem. Sol. 24, 909 (1963).

    Article  ADS  Google Scholar 

  57. E. Schreibe, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Thapa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, D.P., Ghimire, M.P. & Thapa, R.K. A DFT study of BeX (X = S, Se, Te) semiconductor: Modified Becke Johnson (mBJ) potential. Semiconductors 48, 1411–1422 (2014). https://doi.org/10.1134/S1063782614110244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614110244

Keywords

Navigation