Skip to main content
Log in

Specific features of preparation of dense ceramic based on barium zirconate

  • Amorphous, Vitreous, and Organic Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In the present work the BaZr0.8Y0.2O3 − δ samples were synthesized by traditional ceramic (solid-state method), citrate-nitrate methods as well as co-precipitation of hydroxides. Among them, the citrate-nitrate combustion method was found to be the optimal one because the obtained powder calcined at 1150°C is single-phase and characterized by high dispersion. It is shown that the transition from solid-state method to wet chemical ones promotes the decrease of the powder particle size from ∼680 nm to 75 nm, respectively. However, at the same time the relative densities of the samples sintered at 1450°C do not exceed the 67%. The dense ceramic (90.2%) was obtained by combination of the citrate-nitrate method and the addition of 1 wt % Co3O4 as a sintering aid to the precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).

    Article  Google Scholar 

  2. E. Fabbri, D. Pergolesi, and E. Traversa, Chem. Soc. Rev. 39, 4355 (2010).

    Article  Google Scholar 

  3. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Adv. Mater. 24, 195 (2012).

    Article  Google Scholar 

  4. E. C. Camilo de Souza, and R. Muccillo, J. Mater. Res. 13, 385 (2010).

    Article  Google Scholar 

  5. D. Medvedev, A. Murashkina, E. Pikalova, A. Podias, A. Demin, and P. Tsiakaras, Prog. Mater. Sci. 60, 72 (2014).

    Article  Google Scholar 

  6. V. P. Gorelov and V. B. Balakireva, Russ. J. Electrochem. 45, 476 (2009).

    Article  Google Scholar 

  7. E. P. Antonova, I. Yu. Yaroslavtsev, D. I. Bronin, V. B. Balakireva, V. P. Gorelov, and V. I. Tsidil’kovskii, Russ. J. Electrochem. 46, 741 (2010).

    Article  Google Scholar 

  8. V. P. Gorelov, V. B. Balakireva, and A. V. Kuz’min, Russ. J. Electrochem. 46, 890 (2010).

    Article  Google Scholar 

  9. P. Babilo and S. M. Haile, J. Am. Chem. Soc. 88, 2362 (2005).

    Google Scholar 

  10. S. Tao and J. T. S. Irvine, J. Solid State Chem. 180, 3493 (2007).

    Article  ADS  Google Scholar 

  11. J. Tong, D. Clark, L. Bernau, M. Sanders, and R. O’Hayre, J. Mater. Chem. 20, 6333 (2010).

    Article  Google Scholar 

  12. Z. Shao, W. Zhou, and Z. Zhu, Progr. Mater. Sci. 57, 804 (2012).

    Article  Google Scholar 

  13. J. Tong, D. Clark, M. Hoban, and R. O’Hayre, Solid State Ionics 181, 496 (2010).

    Article  Google Scholar 

  14. P. Babilo, T. Uda, and S. M. Haile, J. Mater. Res. 22, 1322 (2007).

    Article  ADS  Google Scholar 

  15. S. Nikodemski, J. Tong, and R. O’Hayre, Solid State Ionics 253, 201 (2013).

    Article  Google Scholar 

  16. http://www.ihte.uran.ru/?page-id=228

  17. A. V. Orlov, O. A. Shlyakhtin, A. L. Vinokurov, A. V. Knotko, and Yu. D. Tret’yakov, Inorg. Mater. 41, 1194 (2005).

    Article  Google Scholar 

  18. J. S. S. J. Ketzial, D. Radhika, and A. S. Nesaraj, Int. J. Ind. Chem. 4, 18 (2013).

    Article  Google Scholar 

  19. Y. Guo, Y. Lin, R. Ran, and Z. Shao, J. Power Sources 193, 400 (2009).

    Article  Google Scholar 

  20. E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, S. Licoccia, and E. Traversa, Solid State Ionics 179, 558 (2008).

    Article  Google Scholar 

  21. P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj, Int. J. Hydr. Energy 37, 3848 (2012).

    Article  Google Scholar 

  22. P. I. Dahl, H. L. Lein, Y. Yu, J. Tolchard, T. Grande, M.-A. Einarsrud, C. N. Kjolseth, T. Norby, and R. Haugsrud, Solid State Ionics 182, 32 (2011).

    Article  Google Scholar 

  23. H. P. Kumar, C. Vijayakumar, C. N. George, S. Solomon, R. Jose, J. K. Thomas, and J. Koshy, J. Alloys Compd. 458, 528 (2008).

    Article  Google Scholar 

  24. F. Boschini, A. Rulmont, R. Cloots, and B. Vertruyen, J. Eur. Ceram. Soc. 29, 1457 (2009).

    Article  Google Scholar 

  25. K. D. Kreuer, St. Adams, W. W. Munch, A. Fuchs, U. Klock, and J. Maier, Solid State Ionics 145, 295 (2001).

    Article  Google Scholar 

  26. T. Schober and H. G. Bohn, Solid State Ionics 127, 351 (2000).

    Article  Google Scholar 

  27. S. B. C. Duval, P. Holtappels, U. F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, Solid State Ionics 178, 1437 (2007).

    Article  Google Scholar 

  28. F. Iguchi, T. Yamada, N. Sata, T. Tsurui, and H. Yugami, Solid State Ionics 177, 2381 (2006).

    Article  Google Scholar 

  29. L. Bi and E. Traversa, J. Mater. Res 29, 1 (2014).

    Article  Google Scholar 

  30. S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, V. P. Plakhty, A. S. Shestak, A. G. Soldatov, A. Podlesnyak, K. Conder, M. Baran, W. R. Flavell, and A. Furrer, J. Cryst. Growth 275, 120 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Medvedev.

Additional information

Original Russian Text © Yu.G. Lyagaeva, D.A. Medvedev, A.K. Demin, T.V. Yaroslavtseva, S.V. Plaksin, N.M. Porotnikova, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1388–1393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyagaeva, Y.G., Medvedev, D.A., Demin, A.K. et al. Specific features of preparation of dense ceramic based on barium zirconate. Semiconductors 48, 1353–1358 (2014). https://doi.org/10.1134/S1063782614100182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100182

Keywords

Navigation