Skip to main content
Log in

Influence of inhomogeneous broadening and deliberately introduced disorder on the width of the lasing spectrum of a quantum dot laser

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Analytical expressions for the shape and width of the lasing spectra of a quantum-dot (QD) laser in the case of a small (in comparison with the spectrum width) homogeneous broadening of the QD energy levels have been obtained. It is shown that the dependence of the lasing spectrum width on the output power at room temperature is determined by two dimensionless parameters: the width of QD distribution over the optical-transition energy, normalized to temperature, and the ratio of the optical loss to the maximum gain. The optimal dimensions of the laser active region have been found to obtain a specified width of the emission spectrum at a minimum pump current. The possibility of using multilayer structures with QDs to increase the lasing spectrum’s width has been analyzed. It is shown that the use of several arrays of QDs with deliberately variable optical-transition energies leads to broadening of the lasing spectra; some numerical estimates are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Ustinov and A. E. Zhukov, Semicond. Sci. Technol. 15(8), R41 (2000).

    Article  ADS  Google Scholar 

  2. A. E. Zhukov and A. R. Kovsh, Quantum Electron. 38, 408 (2008).

    Article  ADS  Google Scholar 

  3. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, Opt. Lett. 32, 793 (2007).

    Article  ADS  Google Scholar 

  4. A. V. Savel’ev, M. V. Maksimov, and A. E. Zhukov, Semiconductors 45, 241 (2011).

    Article  ADS  Google Scholar 

  5. A. V. Savel’ev, I. I. Novikov, M. V. Maksimov, Yu. M. Shernyakov, and A. E. Zhukov, Semiconductors 43, 1597 (2009).

    Article  ADS  Google Scholar 

  6. I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin, J. Tignon, C. Delalande, G. Bastard, Ph. Roussignol, and J. M. Gerard, Phys. Rev. B 68, 233301 (2003).

    Article  ADS  Google Scholar 

  7. M. Sugawara, K. Mukai, Y. Nakara, H. Ishikawa, and A. Sakamoto, Phys. Rev. B 61, 7595 (2000).

    Article  ADS  Google Scholar 

  8. L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, and Z. G. Wang, Physica E 39, 203 (2007).

    Article  ADS  Google Scholar 

  9. H. Jiang and J. Singh, J. App. Phys. 85, 10 (1999).

    Google Scholar 

  10. Y. J. Kim, Y. K. Joshi, and A. G. Fedorov, J. Appl. Phys. 107, 073104 (2010).

    Article  ADS  Google Scholar 

  11. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, J. Appl. Phys. 97, 043523 (2005).

    Article  ADS  Google Scholar 

  12. A. B. Vasil’eva and N. A. Tikhonov, Integral Equations (Fizmatlit, Moscow, 2004), p. 160 [in Russian].

    Google Scholar 

  13. L. V. Asryan and R. A. Suris, Semocond. Sci. Technol. 11, 554 (1996).

    Article  ADS  Google Scholar 

  14. C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. N. Brunkov, B. V. Volovik, S. G. Konnikov, A. R. Kovsh, and V. M. Ustinov, Appl. Phys. Lett. 76, 1573 (2000).

    Article  ADS  Google Scholar 

  15. B. Spivak and S. Luryi, Future Trends in Microelectronics: Up the Nano Creek (Wiley, IEEE Press, 2007), p. 68; http://arxiv.org/ftp/physics/papers/0608/0608260/pdf

  16. A. E. Zhukov, M. V. Maximov, N. Yu. Gordeev, A. V. Sa- velyev, D. A. Livshits, and A. R. Kovsh, Semicond. Sci. Technol. 26, 014004 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savelyev.

Additional information

Original Russian Text © V.V. Korenev, A.V. Savelyev, A.E. Zhukov, A.V. Omelchenko, M.V. Maximov, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 5, pp. 701–707.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenev, V.V., Savelyev, A.V., Zhukov, A.E. et al. Influence of inhomogeneous broadening and deliberately introduced disorder on the width of the lasing spectrum of a quantum dot laser. Semiconductors 46, 684–689 (2012). https://doi.org/10.1134/S1063782612050120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612050120

Keywords

Navigation