Skip to main content
Log in

Two-band combined model of a resonant tunneling diode

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A two-band combined model of a resonant tunneling diode, based on the semiclassical and quantum mechanical (the wave function formalism) approaches is proposed. The main specific feature of this model is the possibility of taking into account the interaction between different classical or quantum mechanical device regions with simultaneous consideration of the Γ-X intervalley scattering. It is shown that this model gives satisfactory agreement with the experimental data on the current-voltage characteristics and allows explanation of the plateau region in these characteristics within the stationary model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Pulsford, R. J. Nicholas, P. Dawson, et al., Phys. Rev. Lett. 63, 2284 (1989).

    Article  ADS  Google Scholar 

  2. H. C. Liu, Appl. Phys. Lett. 51, 1019 (1987).

    Article  ADS  Google Scholar 

  3. J. P. Sun, R. K. Mains, K. Yang, and G. I. Haddad, J. Appl. Phys. 74, 5053 (1993).

    Article  ADS  Google Scholar 

  4. Y.-C. Chang, Phys. Rev. B 37, 8215 (1988).

    Article  ADS  Google Scholar 

  5. S. Biondini and G. Borgioli, in Proceedings of 12th Conference on Waves and Stability in Continuous Media, WASCOM2003 (World Sci., Singapore, 2004), p. 78.

    Google Scholar 

  6. R. Yang, M. Sweeny, D. Day, and J. Xu, IEEE Trans. Electron Devices 38, 442 (1991).

    Article  Google Scholar 

  7. O. Morandi and M. Modugno, Phys. Rev. B 71, 235331 (2005).

    Google Scholar 

  8. D. Ting, E. Yu, and T. McGill, Phys. Rev. B 45, 3583 (1992).

    Article  ADS  Google Scholar 

  9. G. F. Karavaev and A. A. Voronkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 3 (2000).

  10. S. N. Grinyaev, G. F. Karavaev, and V. N. Chernyshov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 28, 1393 (1994) [Semiconductors 28, 784 (1994)].

    Google Scholar 

  11. G. F. Karavaev, S. N. Grinyaev, and V. N. Chernyshov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 64 (1992).

  12. G. F. Karavaev and A. A. Voronkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 78 (2003).

  13. L. Demeio, L. Barletti, A. Bertoni, et al., Physica B (Amsterdam) 314, 104 (2002).

    ADS  Google Scholar 

  14. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovich, J. Appl. Phys. 81, 7845 (1997).

    Article  ADS  Google Scholar 

  15. R. C. Bowen, G. Klimeck, R. K. Lake, et al., J. Appl. Phys. 81, 3207 (1997).

    Article  ADS  Google Scholar 

  16. T. B. Boykin, R. C. Bowen, G. Klimeck, and K. L. Lear, Appl. Phys. Lett. 75, 1302 (1999).

    Article  ADS  Google Scholar 

  17. I. I. Abramov and I. A. Goncharenko, Élektromagn. Volny Élektron. Sist. 7(3), 54 (2002).

    Google Scholar 

  18. I. I. Abramov, I. A. Goncharenko, and N. V. Kolomeĭtseva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1138 (2005) [Semiconductors 39, 1102 (2005)].

    Google Scholar 

  19. J. P. Sun, R. K. Mains, K. Yang, and G. I. Haddad, J. Appl. Phys. 74, 5053 (1993).

    Article  ADS  Google Scholar 

  20. J. P. Sun, PhD Thesis (Dep. of EECS, Univ. of Michigan, Ann Arbor, 1993).

    Google Scholar 

  21. I. I. Abramov, I. A. Goncharenko, and N. V. Kolomeĭtseva, Mikrosist. Tekh., No. 9, 36 (2004).

  22. I. I. Abramov, I. A. Goncharenko, and N. V. Kolomeĭtseva, Dokl. BGUIR, Élektron. Mater. Tekhnol. Inf. 4, 42 (2004).

    Google Scholar 

  23. I. I. Abramov, Simulation of Physical Processes in Elements of Silicon Integrated Circuits (Belorus, Gos. Univ., Minsk, 1999) [in Russian].

    Google Scholar 

  24. I. I. Abramov, I. A. Goncharenko, S. A. Ignatenko, et al., Mikroélektronika 32, 124 (2003) [Russ. Microelectronics 32, 97 (2003)].

    Google Scholar 

  25. J. S. Wu, C. Y. Chang, C. P. Lee, et al., Solid-State Electron. 34, 403 (1991).

    Article  Google Scholar 

  26. H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  27. T. Wei, S. Stapleton, and O. Berolo, J. Appl. Phys. 77, 4071 (1995).

    Article  ADS  Google Scholar 

  28. E. R. Brown, W. D. Goodhue, and T. C. L. C. Sollner, J. Appl. Phys. 64, 1519 (1988).

    Article  ADS  Google Scholar 

  29. S. C. Kan, H. Morkoc, and A. Yariv, Appl. Phys. Lett. 52, 2250 (1988).

    Article  ADS  Google Scholar 

  30. K. L. Jensen and F. A. Buot, Phys. Rev. Lett. 66, 1078 (1991).

    Article  ADS  Google Scholar 

  31. P. Zhao, D. L. Woolard, B. L. Gelmont, and H.-L. Cui, J. Appl. Phys. 94, 1833 (2003).

    Article  ADS  Google Scholar 

  32. I. A. Obukhov, Simulation of Charge Transfer in Mesoscopic Structures (Veber, Sevastopol’, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Abramov.

Additional information

Original Russian Text © I.I. Abramov, I.A. Goncharenko, N.V. Kolomeitseva, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 11, pp. 1395–1400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov, I.I., Goncharenko, I.A. & Kolomeitseva, N.V. Two-band combined model of a resonant tunneling diode. Semiconductors 41, 1375–1380 (2007). https://doi.org/10.1134/S106378260711019X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378260711019X

PACS numbers

Navigation