Skip to main content
Log in

A Novel Approach to Space Radiation Tests by Using High Power Laser Plasma Interactions

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The potential for protons and ions accelerated by ultra-intense high power laser systems was investigated to perform space radiation tests for electronic components and materials which will be used in space. Currently, conventional accelerator systems, which produce monoenergetic particle beams, are employed for space radiation testing. All components must be tested with several different monoenergetic proton and ion beams selected from their continuous energy spectra in space because their broad energy range is a difficult to mimic with discrete energy beams coming from conventional accelerators. Therefore, each component is subjected to at least five different energy proton tests as well as a selection of beams of different ions, which increases the cost of determining the radiation hardness of these components and makes it unpractical. However, laser driven accelerators (LDAs) are capable of producing a mixed environment of particles such as electrons, protons, neutrons, and ions, as well as photons in a wide energy range. The parameters of the laser-plasma interaction can be selected so that the energy spectra and particle fluences of the space radiation environment can be recreated in the laboratory. By using LDA systems, the impact of space radiation on space electronics can be tested using table-top lasers. We performed particle-in-cell (PIC) codes to calculate the energy spectra of accelerated particles via laser plasma interactions. In our simulations, H+ and C+6 energy spectra produced from high power laser and plasma interactions were obtained using EPOCH 2D PIC code. These spectra were compared with proton and C+6 energy spectra and fluences in four different Earth orbits at different altitudes in space, obtained using the NASA AP-8MIN, the CREME-96 and the ESP-PSYCHIC models from the SPENVIS program. The comparisons between the results of EPOCH simulations and SPENVIS look promising in terms of the similarities of these spectra up to 190 MeV for protons and up to 1150 MeV for carbon ions. The idea of using accelerated particles from ultra-intense lasers rather than the conventional accelerator systems is promising for space radiation tests due to their wide energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and D. W. Forslund, Nature 311, 525 (1984).

    Article  ADS  Google Scholar 

  2. S. M. Hooker, Nat. Photonics 7, 775 (2013).

    Article  ADS  Google Scholar 

  3. B. M. Hegelich, D. Jung, B.J. Albright, M. Cheung, B. Dromey, D. C. Gautier, C. Hamilton, S. Letzring, R. Munchhausen, S. Palaniyappan, R. Shah, H. C. Wu, L. Yin, and J. C. Fernández, arXiv:1310.8650 (2013). https://doi.org/10.48550/arXiv.1310.8650

  4. D. Sangwan, O Culfa, C. P. Ridgers, S. Aogaki, D. Stutman, and B. Diaconescu, Laser Part. Beams 37, 346 (2019).

    Article  ADS  Google Scholar 

  5. M. Passoni, C. Perego, A. Sgattoni, and D. Batani, Phys. Plasmas 20, 060701 (2013).

  6. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000).

    Article  ADS  Google Scholar 

  7. Ö. Culfa, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, 338 (2017).

    Article  Google Scholar 

  8. X. Zhang, B. Shen, L. Ji, F. Wang, M. Wen, W. Wang, J. Xu, and Y. Yu, Phys. Plasmas 17, 123102 (2010).

  9. D. Jung, L. Yin, D. C. Gautier, H. C. Wu, S. Letzring, B. Dromey, R. Shah, S. Palaniyappan, T. Shimada, R. P. Johnson, J. Schreiber, D. Habs, J. C. Fernández, B. M. Hegelich, and B. J. Albright, Phys. Plasmas 20, 083103 (2013).

  10. B. M. Hegelich, I. Pomerantz, L. Yin, H. C. Wu, D. Jung, B. J. Albright, D. C. Gautier, S. Letzring, S. Palaniyappan, R. Shah, K. Allinger, R. Hörlein, J. Schreiber, D. Habs, J. Blakeney, et al., New J. Phys. 15, 085015 (2013).

  11. A. V. Kuznetsov, T. Z. Esirkepov, F. F. Kamenets, and S. V. Bulanov, Plasma Phys. Rep. 27, 211 (2001).

    Article  ADS  Google Scholar 

  12. Ö. Culfa, Eur. Phys. J. D 75, 194 (2021).

    Article  ADS  Google Scholar 

  13. M. Passoni, L. Bertagna, and A. Zani, New J. Phys. 12, 045012 (2010).

  14. L. Yin, B. J. Albright, K. J. Bowers, D. Jung, J. C. Fernández, and B. M. Hegelich, Phys. Rev. Lett. 107, 045003 (2011).

  15. S. Palaniyappan, B. M. Hegelich, H.-C. Wu, D. Jung, D. C. Gautier, L. Yin, B. J. Albright, R. P. Johnson, T. Shimada, S. Letzring, D. T. Offermann, J. Ren, C. Huang, R. Hörlein, B. Dromey, et al., Nat. Phys. 8, 763 (2012).

    Article  Google Scholar 

  16. E. Lefebvre and G. Bonnaud, Phys. Rev. Lett. 74, 2002 (1995).

    Article  ADS  Google Scholar 

  17. B. Hidding, O. Karger, T. Königstein, G. Pretzler, and J. B. Rosenzweig, Final Report on ESA General Studies Programme Activity (European Space Agency, Hamburg, 2013). https://pure.strath.ac.uk/ws/portalfiles/portal/40784794/Hidding_etal_ESA2014_laser_plasma_accelerators_transform_space_radiation_testing.pdf.

    Google Scholar 

  18. B. Hidding, O. Karger, T. Königstein, G. Pretzler, G. G. Manahan, P. McKenna, R. Gray, R. Wilson, S. M. Wiggins, G. H. Welsh, A. Beaton, P. Delinikolas, D. A. Jaroszynski, J. B. Rosenzweig, A. Karmakar, et al., Sci. Rep. 7, 42354 (2017).

    Article  ADS  Google Scholar 

  19. B. Hidding, T. Königstein, O. Willi, J. B. Rosenzweig, K. Nakajima, and G. Pretzler, Nucl. Instrum. Methods Phys. Res., Sect. A 636, 31 (2011).

    Google Scholar 

  20. T. Königstein, O. Karger, G. Pretzler, J. B. Rosenzweig, and B. Hidding, J. Plasma Phys. 78, 383 (2012).

    Article  ADS  Google Scholar 

  21. SPENVIS interface, The Earth’s Trapped Particle Radiation Environment. https://www.spenvis.oma.be/help/background/traprad/traprad.html. Cited June 20, 2022.

  22. C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell, J. Comput. Phys. 260, 273 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  23. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Plasma Phys. Controlled Fusion 57, 113001 (2015).

  24. D. M. Sawyer and J. I. Vette, NASA Technical Report No. 77-18983, (NASA, Washington, DC, 1976).

  25. C. E. Jordan, Scientific Report No. 1 (RADEX, Inc., Bedford, MA, 1989).

  26. A. J. Tylka, J. H. Adams, P. R. Boberg, B. Brownstein, W. F. Dietrich, E. O. Flueckiger, E. L. Petersen, M. A. Shea, D. F. Smart, and E. C. Smith, IEEE Trans. Nucl. Sci. 44, 2150 (1997).

    Article  ADS  Google Scholar 

  27. M. A. Xapsos, C. Stauffer, T. Jordan, J. L. Barth, and R. A. Mewaldt, IEEE Trans. Nucl. Sci. 54, 1985 (2007).

    Article  ADS  Google Scholar 

  28. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

  29. J. H. Bin, W. J. Ma, H. Y. Wang, M. J. V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P. S. Foster, B. Dromey, X. Q. Yan, R. Ramis, J. Meyerter-Vehn, M. Zepf, and J. Schreiber, Phys. Rev. Lett. 115, 064801 (2015).

  30. A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, et al., Nat. Commun. 9, 724 (2018).

    Article  ADS  Google Scholar 

  31. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, et al., Phys. Rev. Lett. 85, 2945 (2000).

    Article  ADS  Google Scholar 

  32. C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature 431, 538 (2004).

    Article  ADS  Google Scholar 

  33. M. Ramsay, PhD Thesis (Univ. Warwick, Coventry, 2015).

  34. A. Macchi, arXiv: 1712.06443 (2017). https://doi.org/10.48550/arXiv.1712.06443

  35. J. Fuchs, Y. Sentoku, S. Karsch, J. Cobble, P. Audebert, A. Kemp, A. Nikroo, P. Antici, E. Brambrink, A. Blazevic, E. M. Campbell, J. C. Fernández, J.‑C. Gauthier, M. Geissel, M. Hegelich, et al., Phys. Rev. Lett. 94, 045004 (2005).

  36. Ö. Culfa, G. J. Tallents, M. E. Korkmaz, A. K. Rossall, E. Wagenaars, C. P. Ridgers, C. D. Murphy, N. Booth, D. C. Carroll, L. A. Wilson, K. L. Lancaster, and N. C. Woolsey, Laser Part. Beams 35, 58 (2017).

    Article  ADS  Google Scholar 

  37. E. G. Stassinopoulos and J. P. Raymond, Proc. IEEE 76, 1423 (1988).

    Article  ADS  Google Scholar 

  38. J. F. Ziegler and J. P. Biersack, in Treatise on Heavy-Ion Science, Vol. 6: Astrophysics, Chemistry, and Condensed Matter, Ed. by D. A. Bromley (Springer, Boston, MA, 1985), p. 93. https://doi.org/10.1007/978-1-4615-8103-1_3

  39. D. Heynderickx, B. Quaghebeur, E. Speelman, and E. Daly, in Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000, Paper AIAA-2000-0371. https://doi.org/10.2514/6.2000-371

  40. Z. C. Shen and D. K. Yan, Spacecr. Environ. Eng. 31, 229 (2014).

    Google Scholar 

  41. D. Y. Kusnierkiewicz, Johns Hopkins APL Tech. Dig. 24, 150 (2003).

    Google Scholar 

  42. T. Rodríguez-González, C. Guerrero, M. C. Jiménez-Ramos, P. Dendooven, M. J. Lerendegui-Marco, L. M. Fraile, M. A. Millán-Callado, I. Ozoemelam, A. Parrado, and J. M. Quesada, EPJ Web Conf. 239, 24003 (2020).

  43. K. M. Hofmann, U. Masood, J. Pawelke, and J. J. Wilkens, Med. Phys. 42, 5120 (2015).

    Article  Google Scholar 

  44. Laser-Plasma Interactions and Applications, Ed. by P. McKenna, D. Neely, R. Bingham, and D. Jaroszynski (Springer, Berlin, 2013).

    Google Scholar 

  45. V. Scuderi, G. Milluzzo, A. Alejo, A. G. Amico, N. Booth, G. A. P. Cirrone, D. Doria, J. Green, S. Kar, G. Larosa, R. Leanza, D. Margarone, P. McKenna, H. Padda, G. Petringa, et al., J. Instrum. 12, C03086 (2017).

  46. S. Koechel and M. Langer, in Proceedings of the 69th International Astronautical Congress, Bremen, 2018, Paper IAC-18.E6.3.2, Vol. 22, p. 16610. http://toc.proceedings.com/47918webtoc.pdf.

  47. D. Paikowsky, New Space 5, 84 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources). The research was supported by TUBITAK research project 118F077 and the Ministry of Development of Turkey (Grant no: 2015K121190). The EPOCH simulation studies of this work was in part funded by the UK EPSRC grants EP/G054950/1, EP/G056803/1, EP/G055165/1 EP/M018156/1 and EP/ M022-463/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yigitoglu Keskin, M. B. Demirkoz or O. Culfa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, M.Y., Demirkoz, M.B. & Culfa, O. A Novel Approach to Space Radiation Tests by Using High Power Laser Plasma Interactions. Plasma Phys. Rep. 49, 748–758 (2023). https://doi.org/10.1134/S1063780X22602048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22602048

Keywords:

Navigation