Skip to main content
Log in

On the Concept of Plasma Mass-Separation in Crossed E × B Fields with a Potential Well (a Review)

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

One of the relevant tasks of nuclear power industry is the reprocessing of spent nuclear fuel. Such processing implies the separation of actinides from uranium fission products. One of the processing methods can be plasma mass separation. In the last 10 years, research aimed at the development of various aspects related to plasma mass separation has been actively conducted at the Joint Institute for High Temperatures of the Russian Academy of Sciences. The article provides an overview of the main results of these studies in four areas: numerical calculations and analysis of separation schemes; generation of background plasma and formation of plasma potential distribution; plasma source for injection of a mixture of separated substances; and demonstration of the model substances separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. N. Alekseev, S. V. Alekseev, E. A. Andrianova, V. G. Asmolov, V. M. Dekusar, A. V. Zrodnikov, V. S. Kagramanyan, O. V. Koltun, A. S. Pavlov, N. N. Ponomarev-Stepnoi, S. A. Subbotin, R. R. Temishev, P. S. Teplov, V. I. Usanov, and V. F. Tsibulskii, Two-Component Nuclear Power System with Thermal and Fast Reactors in Closed Nuclear Fuel Cycle, Ed. by N. N. Ponomarev-Stepnoi (Tekhnosfera, Moscow, 2016) [in Russian].

    Google Scholar 

  2. V. I. Rachkov, V. M. Poplavskii, A. M. Tsibulya, Y. E. Bagdasarov, B. A. Vasiliev, Y. L. Kamanin, S. L. Osipov, N. G. Kuzavkov, V. N. Ershov, and M. R. Ashirmetov, At. Energy 108, 254 (2010). https://doi.org/10.1007/s10512-010-9286-z

  3. Yu. G. Dragunov, V. V. Lemekhov, V. S. Smirnov, and N. G. Chernetsov, At. Energy 113, 70 (2012). https://doi.org/10.1007/s10512-012-9597-3

    Article  Google Scholar 

  4. O. V. Vorontsova, A. E. Goltsov, and N. A. Molokanov, Scientific and Technical Annual Report 2017 (Joint Stock Company NIKIET, Moscow, 2017), p. 262 [in Russian].

  5. E. O. Adamov, A. V. Lopatkin, E. V. Muravyov, V. I. Rachkov, and Yu. S. Khomyakov, Izv. Ros. Akad. Nauk, Energ., No. 1, 3 (2019) [in Russian]. https://doi.org/10.1134/S0002331019010035

  6. A. Yu. Shadrin, K. N. Dvoeglazov, V. B. Ivanov, V. I. Volk, and V. V. Shatalov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (76), 69 (2014) [in Russian].

  7. D. A. Dolgolenko and Y. A. Muromkin, Phys.–Usp. 60, 994 (2017). https://doi.org/10.3367/UFNe.2016.12.038016

    Article  Google Scholar 

  8. S. J. Zweben, R. Gueroult, and N. J. Fisch, Phys. Plasmas 25, 090901 (2018). https://doi.org/10.1063/1.5042845

  9. V. P. Smirnov, A. A. Samokhin, A. V. Gavrikov, S. D. Kuzmichev, R. A. Usmanov, and N. A. Vorona, Plasma Phys. Rep. 45, 454 (2019). https://doi.org/10.1134/S1063780X1905012X

    Article  ADS  Google Scholar 

  10. A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, and Y. Rugama, JEFF Report No. 21 (Organization for Economic Cooperation and Development, Paris, 2006). https://www.oecd-nea.org/dbdata/nds_jefreports/jefreport-21/jeff21.pdf.

    Google Scholar 

  11. V. L. Paperny, V. I. Krasov, N. V. Lebedev, and N. V. Astrakchantsev, Plasma Sources Sci. Technol. 20, 035005 (2011). https://doi.org/10.1088/0963-0252/20/3/035005

  12. A. V. Timofeev, Plasma Phys. Rep. 26, 626 (2000). https://doi.org/10.1134/1.952900

    Article  ADS  Google Scholar 

  13. A. J. Fetterman and N. J. Fisch, Phys. Plasmas 18, 094503 (2011). https://doi.org/10.1063/1.3631793

  14. R. Gueroult and N. J. Fisch, Phys. Plasmas 19, 122503 (2012). https://doi.org/10.1063/1.4771674

  15. R. Gueroult and N. J. Fisch, Plasma Sources Sci. Technol. 23, 035002 (2014). https://doi.org/10.1088/0963-0252/23/3/035002

  16. V. A. Zhil’tsov, V. M. Kulygin, N. N. Semashko, A. A. Skovoroda, V. P. Smirnov, A. V. Timofeev, E. G. Kudryavtsev, V. I. Rachkov, and V. V. Orlov, At. Energy. 101, 755 (2006). https://doi.org/10.1007/s10512-006-0164-7

  17. A. V. Timofeev, Phys.–Usp. 57, 990 (2014). https://doi.org/10.3367/UFNe.0184.201410g.1101

    Article  Google Scholar 

  18. A. V. Timofeev, Plasma Phys. Rep. 33, 890 (2007). https://doi.org/10.1134/S1063780X07110025

    Article  ADS  Google Scholar 

  19. Y. A. Muromkin, J. Energy Power Eng. 7, 306 (2013).

    Google Scholar 

  20. A. C. La Fontaine, P. Louvet, P. Le Gourrierec, and A. Pailloux, J. Phys. D. Appl. Phys. 31, 847 (1998). https://doi.org/10.1088/0022-3727/31/7/014

    Article  ADS  Google Scholar 

  21. Y. V. Kovtun, E. I. Skibenko, A. I. Skibenko, Y. V. Larin, and V. B. Yuferov, Tech. Phys. 56, 623 (2011). https://doi.org/10.1134/S1063784211050197

    Article  Google Scholar 

  22. V. D. Borisevich and E. P. Potanin, Phys. Scr. 92, 075601 (2017). https://doi.org/10.1088/1402-4896/aa71d2

  23. V. Borisevich, E. Potanin, and J. V. Whichello, IEEE Trans. Plasma Sci. 48, 3472 (2020). https://doi.org/10.1109/TPS.2020.3023799

    Article  ADS  Google Scholar 

  24. D. A. Dolgolenko and Y. A. Muromkin, Phys.-Usp. 52, 345 (2009). https://doi.org/10.3367/UFNe.0179.200904c.0369

    Article  Google Scholar 

  25. M. W. Grossman and T. A. Shepp, IEEE Trans. Plasma Sci. 19, 1114 (1991). https://doi.org/10.1109/27.125034

    Article  ADS  Google Scholar 

  26. R. Gueroult, S. J. Zweben, N. J. Fisch, and J.-M. Rax, Phys. Plasmas 26, 043511 (2019). https://doi.org/10.1063/1.5083229

  27. R. Gueroult, J.-M. Rax, and N. J. Fisch, Phys. Plasmas 21, 020701 (2014). https://doi.org/10.1063/1.4864325

  28. T. Ohkawa and R. L. Miller, Phys. Plasmas 9, 5116 (2002). https://doi.org/10.1063/1.1523930

    Article  ADS  Google Scholar 

  29. J. Gilleland, S. Agnew, B. Cluggish, R. Freeman, R. Miller, S. Putvinski, L. Sevier, and K. Umstadter, in Proceedings of Waste Management Symposium, Tucson, AZ, 2002. https://www.researchgate.net/publication/228407001_Application_of_Archimedes_Filter_for_Reduction_of_Hanford_HLW.

  30. V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013). https://doi.org/10.1134/S1063780X13050103

    Article  ADS  Google Scholar 

  31. N. A. Strokin and V. M. Bardakov, Plasma Phys. Rep. 45, 46 (2019). https://doi.org/10.1134/S1063780X19010148

    Article  ADS  Google Scholar 

  32. A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2012).

  33. R. Gueroult, J.-M. Rax, and N. J. Fisch, Phys. Plasmas 26, 122106 (2019). https://doi.org/10.1063/1.5126083

  34. A. A. Samokhin, V. P. Smirnov, A. V. Gavrikov, and N. A. Vorona, Tech. Phys. 61, 283 (2016). https://doi.org/10.1134/S1063784216020298

    Article  Google Scholar 

  35. A. Samokhin, A. Gavrikov, S. Kuzmichev, R. Timirkhanov, N. Vorona, V. Smirnov, and R. Usmanov, IEEE Trans. Plasma Sci. 47, 1546 (2019). https://doi.org/10.1109/TPS.2019.2897146

    Article  ADS  Google Scholar 

  36. V. P. Smirnov, A. V. Gavrikov, V. S. Sidorov, V. P. Tarakanov, R. A. Timirkhanov, S. D. Kuzmichev, R. A. Usmanov, and N. A. Vorona, Plasma Phys. Rep. 44, 1104 (2018). https://doi.org/10.1134/S1063780X18120097

    Article  ADS  Google Scholar 

  37. A. V. Gavrikov, V. S. Sidorov, V. P. Smirnov, and V. P. Tarakanov, J. Phys.: Conf. Ser. 1147, 012132 (2019). https://doi.org/10.1088/1742-6596/1147/1/012132

  38. V. S. Smirnov, R. O. Egorov, S. A. Kislenko, N. N. Antonov, V. P. Smirnov, and A. V. Gavrikov, Phys. Plasmas 27, 113503 (2020). https://doi.org/10.1063/5.0020001

  39. N. A. Vorona, A. V. Gavrikov, S. D. Kuzmichev, G. D. Liziakin, A. D. Melnikov, Y. A. Murzaev, V. P. Smirnov, R. A. Timirkhanov, and R. A. Usmanov, IEEE Trans. Plasma Sci. 47, 1223 (2019) [in Russian]. https://doi.org/10.1109/TPS.2018.2890341

    Article  ADS  Google Scholar 

  40. A. D. Melnikov, R. A. Usmanov, N. A. Vorona, A. V. Gavrikov, G. D. Liziakin, V. P. Smirnov, and R. A. Timirkhanov, Phys. At. Nucl. 81, 1536 (2018). https://doi.org/10.1134/S1063778818110145

    Article  Google Scholar 

  41. A. D. Melnikov, R. A. Usmanov, A. V. Gavrikov, G. D. Liziakin, V. P. Smirnov, R. A. Timirkhanov, and N. A. Vorona, J. Phys.: Conf. Ser. 1147, 012131 (2019). https://doi.org/10.1088/1742-6596/1147/1/012131

  42. A. V. Gavrikov, N. A. Vorona, S. D. Kuzmichev, G. D. Lizyakin, and R. A. Timirkhanov, Vestn. Ob’edinennogo Inst. Vys. Temp. 3, 10 (2019). https://doi.org/10.33849/2019202

    Article  Google Scholar 

  43. G. D. Liziakin, A. V. Gavrikov, Y. A. Murzaev, R. A. Usmanov, and V. P. Smirnov, Phys. Plasmas 23, 123502 (2016). https://doi.org/10.1063/1.4969084

  44. G. Liziakin, A. Gavrikov, R. Usmanov, R. Timirkhanov, and V. Smirnov, AIP Adv. 7, 125108 (2017). https://doi.org/10.1063/1.4998806

  45. G. Liziakin, A. Gavrikov, and V. Smirnov, Plasma Sources Sci. Technol. 29, 015008 (2020). https://doi.org/10.1088/1361-6595/ab5ad5

  46. G. Liziakin, A. Oiler, A. Gavrikov, N. Antonov, and V. Smirnov, J. Plasma Phys. 87, 905870414 (2021). https://doi.org/10.1017/S0022377821000829

  47. N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Y. S. Khomyakov, Phys. At. Nucl. 78, 1624 (2015). https://doi.org/10.1134/S1063778815140148

    Article  Google Scholar 

  48. V. P. Polishchuk, R. A. Usmanov, A. D. Melnikov, N. A. Vorona, I. M. Yartsev, R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, I. S. Samoylov, V. P. Smirnov, and N. N. Antonov, High Temp. 58, 476 (2020). https://doi.org/10.1134/S0018151X20040124

    Article  Google Scholar 

  49. R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, V. P. Polishchuk, I. S. Samoylov, V. P. Smirnov, R. A. Usmanov, N. A. Vorona, and I. M. Yartsev, IEEE Trans. Plasma Sci. 45, 140 (2017). https://doi.org/10.1109/TPS.2016.2634627

    Article  ADS  Google Scholar 

  50. L. S. Volkov, N. Y. Babaeva, and N. N. Antonov, J. Phys. D. Appl. Phys. 54, 105202 (2021). https://doi.org/10.1088/1361-6463/abc715

  51. R. K. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smirnov, R. A. Usmanov, and I. M. Yartsev, Phys. At. Nucl. 78, 1631 (2015). https://doi.org/10.1134/S1063778815140021

    Article  Google Scholar 

  52. R. K. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Lizyakin, V. P. Polishchuk, I. S. Samoilov, V. P. Smirnov, R. A. Usmanov, and I. M. Yartsev, Plasma Phys. Rep. 41, 808 (2015). https://doi.org/10.1134/S1063780X15100013

    Article  ADS  Google Scholar 

  53. A. D. Melnikov, R. A. Usmanov, R. K. Amirov, N. N. Antonov, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, and V. P. Smirnov, Plasma Phys. Rep. 46, 611 (2020) https://doi.org/10.1134/S1063780X20060057

    Article  ADS  Google Scholar 

  54. R. A. Usmanov, R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smirnov, N. A. Vorona, and I. M. Yartsev, Phys. Plasmas 25, 063524 (2018). https://doi.org/10.1063/1.5037674

  55. R. A. Usmanov, R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, A. D. Melnikov, V. P. Polistchook, I. S. Samoylov, V. P. Smirnov, N. A. Vorona, and I. M. Yartsev, Plasma Sources Sci. Technol. 29, 015004 (2020). https://doi.org/10.1088/1361-6595/ab5f33

  56. N. N. Antonov, N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, and V. P. Smirnov, Tech. Phys. 61, 180 (2016).

    Article  Google Scholar 

  57. N. N. Antonov, A. V. Gavrikov, A. A. Samokhin, and V. P. Smirnov, Phys. At. Nucl. 79, 1625 (2016). https://doi.org/10.1134/S1063778816140027

    Article  Google Scholar 

  58. N. N. Antonov, R. A. Usmanov, A. V. Gavrikov, and V. P. Smirnov, J. Phys.: Conf. Ser. 1147, 012133 (2019). https://doi.org/10.1088/1742-6596/1147/1/012133

  59. N. Antonov, G. Liziakin, R. Usmanov, A. Gavrikov, N. Vorona, and V. Smirnov, Phys. Plasmas 25, 123506 (2018). https://doi.org/10.1063/1.5050883

  60. G. Liziakin, N. Antonov, R. Usmanov, A. Melnikov, R. Timirkhanov, N. Vorona, V. S. Smirnov, A. Oiler, S. Kislenko, A. Gavrikov, and V. P. Smirnov, Plasma Phys. Control. Fusion. 63, 032002 (2021). https://doi.org/10.1088/1361-6587/abd25e

  61. G. Liziakin, N. Antonov, V. S. Smirnov, R. Timirkhanov, A. Oiler, R. Usmanov, A. Melnikov, N. Vorona, S. Kislenko, A. Gavrikov, and V. P. Smirnov, J. Phys. D. Appl. Phys. 54, 414005 (2021). https://doi.org/10.1088/1361-6463/ac128e

  62. G. Liziakin, N. Antonov, A. Gavrikov, A. Oiler, A. Melnikov, V. Smirnov, R. Timirkhanov, R. Usmanov, L. Volkov, and N. Vorona, in Proceedings of Plasma Processing and Technology International Conference, Barcelona, 2022, p. 142.

  63. R. Usmanov, N. Antonov, A. Gavrikov, G. Liziakin, A. Melnikov, A. Oiler, V. Smirnov, R. Timirkhanov, L. Volkov, and N. Vorona, Plasma Sci. Technol. 24, 085504 (2022). https://doi.org/10.1088/2058-6272/ac62a8

  64. F. A. Akopov and L. B. Borovkova, High Temp. 49, 862 (2011). https://doi.org/10.1134/S0018151X11060022

    Article  Google Scholar 

  65. A. P. Oiler, G. D. Liziakin, A. V. Gavrikov, and V. P. Smirnov, Molecules 27, 6824 (2022). https://doi.org/10.3390/molecules27206824

    Article  Google Scholar 

Download references

Funding

This review was partially supported by Russian Science Foundation no. 21-19-00716, https://rscf.ru/en/project/21-19-00716/, sections devoted to numerical culations and analysis of separation schemes, as well as separation of model substances; and partialy by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-01056-22-00), sections dedicated to the plasma source for injection of a mixture of separated substances and a section dedicated to the generation of background plasma and plasma potential distribution formation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Liziakin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liziakin, G.D., Antonov, N.N., Vorona, N.A. et al. On the Concept of Plasma Mass-Separation in Crossed E × B Fields with a Potential Well (a Review). Plasma Phys. Rep. 48, 1251–1260 (2022). https://doi.org/10.1134/S1063780X22601912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601912

Keywords:

Navigation