Skip to main content
Log in

Wave Processes in Plasma Astrophysics

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Theoretical studies of wave processes in rotating astrophysical plasma are discussed, with a particular emphasis on new theoretical models of astrophysical plasma such as the magnetohydrodynamic shallow water approximation and anelastic approximation, together with the frequently-used Boussinesq approximation. In addition to the traditional approximation for Coriolis force, effects are discussed, which are caused by its non-traditional representation that accounts for the horizontal rotation component. Linear waves in such plasma are described in detail, and their dispersion properties are discussed. An overview of instabilities in astrophysical plasma is given, which are caused by nonlinear effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. M. S. Miesch and P. A. Gilman, Sol. Phys. 220, 287 (2004).

    Article  ADS  Google Scholar 

  2. P. A. Gilman, Astrophys. J. 544, L79 (2000).

    Article  ADS  Google Scholar 

  3. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, and B. M. Shergelashvili, Astron. Astrophys. 470, 815 (2007).

    Article  ADS  Google Scholar 

  4. K. Heng and A. Spitkovsky, Astrophys. J. 703, 1819 (2009).

    Article  ADS  Google Scholar 

  5. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).

    Article  ADS  Google Scholar 

  6. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  7. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).

    Article  ADS  Google Scholar 

  8. J. Y.-K. Cho, Philos. Trans. R. Soc., A 366, 4477 (2008).

  9. K. Heng and J. Workman, Astrophys. J., Suppl. Ser. 213, 27 (2014).

    Article  ADS  Google Scholar 

  10. K. Heng and A. P. Showman, Annu. Rev. Earth Planet. Sci. 43, 509 (2015).

    Article  ADS  Google Scholar 

  11. S. M. Tobias, P. H. Diamond, and D. W. Hughes, Astrophys. J. 667, L113 (2007).

    Article  ADS  Google Scholar 

  12. A. M. Balk, Astrophys. J. 796, 143 (2014).

    Article  ADS  Google Scholar 

  13. K. V. Karel’skii, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 113, 530 (2011).

    Article  ADS  Google Scholar 

  14. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, Phys. Scr. 2013, 014024 (2013).

  15. H. De Sterck, Phys. Plasmas 8, 3293 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. J. Dellar, Phys. Plasmas 10, 581 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Zeitlin, Nonlinear Processes Geophys. 20, 893 (2013).

    Article  ADS  Google Scholar 

  18. S. N. Aristov and P. G. Frik, J. Appl. Mech. Tech. Phys. 32, 189 (1991).

    Article  ADS  Google Scholar 

  19. K. V. Karel’skii, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 114, 1058 (2012).

    Article  ADS  Google Scholar 

  20. K. V. Karel’skii, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 116, 680 (2013).

    Article  ADS  Google Scholar 

  21. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967), Vols. 1, 2.

  22. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Translations of Mathematical Monographs, Vol. 55) (Nauka, Moscow, 1968; AMS, New York, 1983). https://doi.org/10.1090/mmono/055

  23. S. K. Godunov, Mat. Sb. 47, 271 (1959).

    MathSciNet  Google Scholar 

  24. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin, Russ. J. Numer. Anal. Math. Modell. 24, 229 (2009).

    Article  Google Scholar 

  25. The Solar Tachocline, Ed. by D. W. Hughes, R. Rosner, and N. O. Weiss (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  26. M. Dikpati and P. A. Gilman, Astrophys. J. 551, 536 (2001).

    Article  ADS  Google Scholar 

  27. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, M. Carbonell, M. L. Khodachenko, H. Lammer, M. Leitzinger, and P. Odert, Astron. Astrophys. 532, A139 (2011).

    Article  ADS  Google Scholar 

  28. J. Braithwaite and H. C. Spruit, R. Soc. Open Sci. 4, 160271 (2017).

  29. J. Philidet, C. Gissinger, F. Lignières, and L. Petitdemange, Geophys. Astrophys. Fluid Dyn. 114, 336 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astrophys. J. 463, 656 (1996).

    Article  ADS  Google Scholar 

  31. K. Batygin, S. Stanley, and D. J. Stevenson, Astrophys. J. 776, 53 (2013).

    Article  ADS  Google Scholar 

  32. B. Löptien, L. Gizon, A. C. Birch, J. Schou, B. Proxauf, T. L. Duvall, Jr., R. S. Bogart, and U. R. Christensen, Nat. Astron. 2, 568 (2018).

    Article  ADS  Google Scholar 

  33. M. Dikpati, B. Belucz, P. A. Gilman, and S. W. McIntosh, Astrophys. J. 862, 159 (2018).

    Article  ADS  Google Scholar 

  34. V. G. A. Böning, H. Hu, and L. Gizon, Astron. Astrophys. 629, A26 (2019).

    Article  ADS  Google Scholar 

  35. H. Saio, Astrophys. J. 256, 717 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  36. P. A. Sturrock, R. Bush, D. O. Gough, and J. D. Scargle, Astrophys. J. 804, 47 (2015).

    Article  ADS  Google Scholar 

  37. C. L. Wolff, Astrophys. J. 502, 961 (1998).

    Article  ADS  Google Scholar 

  38. S. W. McIntosh, W. J. Cramer, M. Pichardo-Marcano, and R. J. Leamon, Nat. Astron. 1, 0086 (2017).

  39. T. V. Zaqarashvili and E. Gurgenashvili, Front. Astron. Space Sci. 5, 00007 (2018).

    Article  ADS  Google Scholar 

  40. L. Gizon, D. Fournier, and M. Albekioni, Astron. Astrophys. 642, A178 (2020).

    Article  ADS  Google Scholar 

  41. M. Dikpati, P. S. Cally, S. W. McIntosh, and E. Heifetz, Sci. Rep. 7, 14750 (2017).

    Article  ADS  Google Scholar 

  42. S. Hunter, PhD Thesis (University of Leeds, Leeds, 2015).

  43. M. A. Fedotova, D. A. Klimachkov, and A. S. Petrosyan, Plasma Phys. Rep. 46, 50 (2020).

    Article  ADS  Google Scholar 

  44. A. S. Petrosyan, D. A. Klimachkov, M. A. Fedotova, and T. A. Zinyakov, Atmosphere 11, 314 (2020).

    Article  ADS  Google Scholar 

  45. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 119, 311 (2014).

    Article  Google Scholar 

  46. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 122, 832 (2016).

    Article  ADS  Google Scholar 

  47. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 123, 520 (2016).

    Article  ADS  Google Scholar 

  48. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 125, 597 (2017).

    Article  ADS  Google Scholar 

  49. D. A. Klimachkov and A. S. Petrosyan, Phys. Lett. A 381, 106 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  50. T. V. Zaqarashvili, R. Oliver, and J. L. Ballester, Astrophys. J. 691, L41 (2009).

    Article  ADS  Google Scholar 

  51. X. Márquez-Artavia, C. A. Jones, and S. M. Tobias, Geophys. Astrophys. Fluid Dyn. 111, 282 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  52. T. Zaqarashvili, Astrophys. J. 856, 32 (2018).

    Article  ADS  Google Scholar 

  53. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon & Breach, Reading, MA, 1992).

  54. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambbridge, 2006).

  55. V. Zeitlin, Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models (Oxford Univ. Press, Oxford, 2018).

    Book  MATH  Google Scholar 

  56. T. D. Kaladze, W. Horton, L. Z. Kahlon, O. Pokhotelov, and O. Onishchenko, J. Geophys. Res.: Space Phys. 118, 7822 (2013).

    Article  ADS  Google Scholar 

  57. O. G. Onishchenko, O. A. Pokhotelov, and N. M. Astafieva, Phys.–Usp. 51, 577 (2008).

    Article  Google Scholar 

  58. O. G. Onishchenko, O. A. Pokhotelov, R. Z. Sagdeev, P. K. Shukla, and L. Stenflo, Nonlinear Processes Geophys. 11, 241 (2004).

    Article  ADS  Google Scholar 

  59. M. Dikpati and P. Charbonneau, Astrophys. J. 518, 508 (1999).

    Article  ADS  Google Scholar 

  60. M. Dikpati, P. A. Gilman, S. Chatterjee, S. W. McIntosh, and T. V. Zaqarashvili, Astrophys. J. 896, 141 (2020).

    Article  ADS  Google Scholar 

  61. K. Mandal and S. Hanasoge, Astrophys. J. 891, 125 (2020).

    Article  ADS  Google Scholar 

  62. B. Raphaldini and C. F. M. Raupp, Astrophys. J. 799, 78 (2015).

    Article  ADS  Google Scholar 

  63. B. Raphaldini, E. Medeiros, C. F. M. Raupp, and A. S. Teruya, Astrophys. J. Lett. 890, L13 (2020).

    Article  ADS  Google Scholar 

  64. N. Andersson, K. Kokkotas, and B. F. Schutz, Astrophys. J. 510, 846 (1999).

    Article  ADS  Google Scholar 

  65. Y.-Q. Lou, Astrophys. J. Lett. 563, L147 (2001).

    Article  ADS  Google Scholar 

  66. Y.-Q. Lou and B. Lian, Mon. Not. R. Astron. Soc. 420, 2147 (2012).

    Article  ADS  Google Scholar 

  67. Z. C. Liang, L. Gizon, A. C. Birch, and T. L. Duvall, Jr., Astron. Astrophys. 626, A3 (2019).

    Article  Google Scholar 

  68. M. Dikpati, S. W. McIntosh, G. Bothun, P. S. Cally, S. S. Ghosh, P. A. Gilman, and O. M. Umurhan, Astrophys. J. 853, 144 (2018).

    Article  ADS  Google Scholar 

  69. Y.-Q. Lou, Astrophys. J. 540, 1102 (2000).

    Article  ADS  Google Scholar 

  70. M. Dikpati and S. W. McIntosh, Space Weather 18, e2018SW002109 (2020).

  71. M. Dikpati, S. W. McIntosh, and S. Wing, Front. Astron. Space Sci. 8, 688604 (2021). https://doi.org/10.3389/fspas.2021.688604

  72. J. R. Kuhn, J. D. Armstrong, R. I. Bush, and P. Scherrer, Nature 405, 544 (2000).

    Article  ADS  Google Scholar 

  73. S. E. Gibson, A. Vourlidas, D. M. Hassler, L. A. Rachmeler, M. J. Thompson, J. Newmark, M. Velli, A. Title, and S. W. McIntosh, Front. Astron. Space Sci. 5, 00032 (2018). https://www.frontiersin.org/articles/10.3389/fspas.2018.00032.

  74. T. V. Zaqarashvili, M. Carbonell, R. Oliver, and J. L. Ballester, Astrophys. J. 709, 749 (2010).

    Article  ADS  Google Scholar 

  75. T. V. Zaqarashvili, R. Oliver, A. Hanslmeier, M. Carbonell, J. L. Ballester, T. Gachechiladze, and I. G. Usoskin, Astrophys. J. Lett. 805, L14 (2015).

    Article  ADS  Google Scholar 

  76. S. W. McIntosh, R. J. Leamon, L. D. Krista, A. M. Title, H. S. Hudson, P. Riley, J. W. Harder, G. Kopp, M. Snow, T. N. Woods, J. C. Kasper, M. L. Stevens, and R. K. Ulrich, Nat. Commun. 6, 6491 (2015).

    Article  ADS  Google Scholar 

  77. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 127, 1136 (2018).

    Article  ADS  Google Scholar 

  78. M. A. Fedotova and A. S. Petrosyan, J. Exp. Theor. Phys. 131, 337 (2020).

    Article  ADS  Google Scholar 

  79. J. I. Yano, J. Fluid Mech. 810, 475 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  80. P. Billant and J.-M. Chomaz, Phys. Fluids 13, 1645 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Lee and R. Takada, Indiana Univ. Math. J. 66, 2037 (2017).

    Article  MathSciNet  Google Scholar 

  82. S. Takehiro, Phys. Earth Planet. Inter. 241, 37 (2015).

    Article  ADS  Google Scholar 

  83. S. Takehiro and Y. Sasaki, Phys. Earth Planet. Inter. 276, 258 (2018).

    Article  ADS  Google Scholar 

  84. T. Nakagawa, Phys. Earth Planet. Inter. 187, 342 (2011).

    Article  ADS  Google Scholar 

  85. N. A. Berkoff, PhD thesis (University of Leeds, Leeds, 2011).

  86. E. A. Spiegel and G. Veronis, Astrophys. J. 131, 442 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  87. E. A. Spiegel and N. O. Weiss, Geophys. Astrophys. Fluid Dyn. 22, 219 (1982).

    Article  ADS  Google Scholar 

  88. M. A. Fedotova and A. S. Petrosyan, J. Exp. Theor. Phys. 131, 1032 (2020).

    Article  ADS  Google Scholar 

  89. M. Fedotova, D. Klimachkov, and A. Petrosyan, Universe 7, 87 (2021).

    Article  ADS  Google Scholar 

  90. B. P. Brown, G. M. Vasil, and E. G. Zweibel, Astrophys. J. 756, 109 (2012).

    Article  ADS  Google Scholar 

  91. A. S. Almgren, J. B. Bell, A. Nonaka, and M. Zingale, Comput. Sci. Eng. 11, 24 (2009).

    Article  Google Scholar 

  92. G. K. Batchelor, Q. J. R. Meteorol. Soc. 79, 224 (1953).

    Article  ADS  Google Scholar 

  93. J. G. Charney and Y. Ogura, J. Meteorol. Soc. Jpn., Ser. II 38, 19a (1960).

    Google Scholar 

  94. D. O. Gough, J. Atmos. Sci. 26, 448 (1969).

    Article  ADS  Google Scholar 

  95. P. R. Bannon, J. Atmos. Sci. 53, 3618 (1996).

    Article  ADS  Google Scholar 

  96. M. A. Calkins, K. Julien, and P. Marti, Proc. R. Soc. A 471, 20140689 (2015).

  97. S. Paolucci, NASA STI/Recon Tech. Rep. N 83, 26036 (1982).

    Google Scholar 

  98. N. Botta, R. Klein, and A. Almgren, Report No. 55 (Potsdam Institute for Climate Impact Research, Potsdam, 1999). https://www.pik-potsdam.de/en/output/publications/pikreports/.files/pr55.pdf.

  99. R. Klein, N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann, and T. Sonar, J. Eng. Math. 39, 261 (2001).

    Article  Google Scholar 

  100. S. I. Braginsky and P. H. Roberts, Geophys. Astrophys. Fluid Dyn. 79, 1 (1995).

    Article  ADS  Google Scholar 

  101. G. A. Glatzmaier and P. H. Roberts, Phys. D 97, 81 (1996).

    Article  Google Scholar 

  102. P. Olson and U. R. Christensen, Earth Planet. Sci. Lett. 250, 561 (2006).

    Article  ADS  Google Scholar 

  103. C. A. Jones, K. M. Kuzanyan, and R. H. Mitchell, J. Fluid Mech. 634, 291 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  104. P. A. Gilman and G. A. Glatzmaier, Astrophys. J., Suppl. Ser. 45, 335 (1981).

    Article  ADS  Google Scholar 

  105. R. K. Yadav and J. Bloxham, Proc. Natl. Acad. Sci. U. S. A. 117, 13991 (2020).

    Article  ADS  Google Scholar 

  106. G. A. Glatzmaier, J. Comput. Phys. 55, 461 (1984).

    Article  ADS  Google Scholar 

  107. S. R. Lantz and Y. Fan, Astrophys. J., Suppl. Ser. 121, 247 (1999).

    Article  ADS  Google Scholar 

  108. M. S. Miesch, J. R. Elliott, J. Toomre, T. L. Clune, G. A. Glatzmaier, and P. A. Gilman, Astrophys. J. 532, 593 (2000).

    Article  ADS  Google Scholar 

  109. A. S. Brun, M. S. Miesch, and J. Toomre, Astrophys. J. 614, 1073 (2004).

    Article  ADS  Google Scholar 

  110. B. P. Brown, M. K. Browning, A. S. Brun, M. S. Miesch, and J. Toomre, Astrophys. J. 689, 1354 (2008).

    Article  ADS  Google Scholar 

  111. B. P. Brown, M. S. Miesch, M. K. Browning, A. S. Brun, and J. Toomre, Astrophys. J. 731, 69 (2011).

    Article  ADS  Google Scholar 

  112. P. K. Smolarkiewicz and P. Charbonneau, J. Comput. Phys. 236, 608 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  113. M. Fedotova, D. Klimachkov, and A. Petrosyan, Mon. Not. R. Astron. Soc. 509, 314 (2022).

    Article  ADS  Google Scholar 

  114. F. V. Dolzhanskii, Fundamentals of Geophysical Hydrodynamics (Fizmatlit, Moscow, 2011; Springer, New York, 2012).

  115. A. P. Showman, X. Tan, and V. Parmentier, Space Sci. Rev. 216, 139 (2020).

    Article  ADS  Google Scholar 

  116. O. G. Onishchenko, O. A. Pokhotelov, N. M. Astaf’eva, W. Horton, and V. N. Fedun, Phys.–Usp. 63, 683 (2020).

    Article  Google Scholar 

  117. T. V. Zaqarashvili, M. Albekioni, J. L. Ballester, Y. Bekki, L. Biancofiore, A. C. Birch, M. Dikpati, L. Gizon, E. Gurgenashvili, E. Heifetz, A. F. Lanza, S. W. McIntosh, L. Ofman, R. Oliver, B. Proxauf, et al., Space Sci. Rev. 217, 15 (2021).

    Article  ADS  Google Scholar 

  118. M. V. Nezlin and E. N. Snezhkin, Rossby Vortices, Spiral Structures, and Solitons (Nauka, Moscow, 1990; Springer-Verlag, Heldeiberg, 1993).

  119. Physics 589—Geophysical Fluid Dynamics. Lecture course by D. J. Raymond, Chapter 3. http://kestrel.nmt.edu/raymond/classes/ph589/notes/ssmodes/ssmodes.pdf. Cited September 10, 2022.

  120. J. Goldstein, R. H. D. Townsend, and E. G. Zweibel, Astrophys. J. 881, 66 (2019).

    Article  ADS  Google Scholar 

  121. A. C. Newell, J. Fluid Mech. 35, 255 (1969).

    Article  ADS  Google Scholar 

  122. L. Ostrovsky, Asymptotic Perturbation Theory of Waves (World Scientific, Singapore, 2014).

    Book  MATH  Google Scholar 

  123. A. D. D. Craik, Wave Interactions and Fluid Flows (Cambridge Univ. Press, Cambridge, 1986).

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the “Basis” Foundation for the Development of Theoretical Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Petrosyan.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, M.A., Klimchakov, D.A. & Petrosyan, A.S. Wave Processes in Plasma Astrophysics. Plasma Phys. Rep. 49, 303–350 (2023). https://doi.org/10.1134/S1063780X22601900

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601900

Keywords:

Navigation