Skip to main content
Log in

Tokamak with Reactor Technologies (TRT): Preliminary Analysis of Nuclear Energy Release in Toroidal Field Coils

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of calculation of nuclear heat deposition rate in the vacuum vessel and magnetic coils of the tokamak with reactor technologies are presented. Results obtained for D–D and D–T plasmas are compared with each other. Based on the results of the calculations, a conclusion is reached that the nuclear heat rate for the D–D plasma falls into an acceptable range below 1 mW/cm3, and the proposed vacuum vessel design is satisfactory from the point of view of radiation shielding. For the D–T plasma, the question regarding additional protection measures or limitation of discharge time remains open for discussion. Based on calculated spatial and energy distributions of the neutron field, we draw the conclusion that an increase in the thickness of protective water layer has the largest effect from the point of view of increasing radiation shielding. Nevertheless, the thickness of the water layer has to be more than doubled in the vacuum vessel, at least, in the inner segment near the equatorial plane, in order to decrease the heat load on the toroidal field coil to the level allowing long discharge when the system operates with D–T plasma. The sources of energy release in toroidal coils are estimated, along with several variants of shielding. In particular, the statement that using boron enriched with 10B isotope has nearly no impact on energy release is substantiated. The possibility of operation with D–D plasma is confirmed, and problems of radiation shielding when using D–T plasma are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuzmin, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Belchenko, et al., Plasma Phys. Rep. 47, 1092 (2021).

  2. J. Armstrong, F. B. Brown, J. S. Bull, L. Casswell, L. J. Cox, D. Dixon, R. A. Forster, J. T. Goorley, H. G. Hughes, J. Favorite, R. Martz, S. G. Mashnik, M. E. Rising, C. Solomon, A. Sood, et al., Report L-A‑UR-1729981 (Los Alamos National Laboratory, Washington, DC, 2017). https://mcnp.lanl.gov/pdf_files/la-ur-17-29981.pdf.

    Google Scholar 

  3. Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, and FDS Team, Ann. Nucl. Energy 82, 161 (2015).

    Article  Google Scholar 

  4. D. Leichtle, B. Colling, M. Fabbri, R. Juarez, M. Loughlin, R. Pampin, E. Polunovskiy, A. Serikov, A. Turner, and L. Bertalot, Fusion Eng. Des. 136, 742 (2018).

    Article  Google Scholar 

  5. The Plansee Group, https://www.plansee.com/en/materials/tungsten.html. Cited August 1, 2021.

  6. Technical specification of Bhukhanvala Industries Pvt. Ltd. http://www.bhukhanvala.in. Cited August 1, 2021.

  7. Virial, Ltd. http://www.virial.ru/materials/arm_ceramic. Cited August 1, 2021.

  8. Evaluated Nuclear Database File (ENDF), version 2021-02-15. https://www-nds.iaea.org/exfor/endf.htm. Cited August 1, 2021.

  9. M. B. Chadwick, M. Herman, P. Oblozinsky, M. E. Dunn, Y. Danon, A. C. Kahler, D. L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D. A. Brown, R. Capote, A. D. Carlson, Y. S. Cho, et al., Nucl. Data Sheets 112, 2887 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  ADS  Google Scholar 

  10. Z. S. Hartwig, C. B. Haakonsen, R. T. Mumgaard, and L. Bromberg, Fusion Eng. Des. 87, 201 (2012).

    Article  Google Scholar 

  11. U. Fischer, C. Bachmann, I. Palermo, P. Pereslavtsev, and R. Villari, Fusion Eng. Des. 98–99, 2134 (2015).

    Article  Google Scholar 

  12. R. Villari, M. Angelone, B. Caiffi, A. Colangeli, F. Crisanti, D. Flammini, N. Fonnesu, R. Luis, G. Mariano, D. Marocco, F. Moro, G. M. Polli, and S. Sandri, Fusion Eng. Des. 155, 111551 (2020).

  13. A. J. Creely, M. J. Greenwald, S. B. Ballinger, D. Brunner, J. Canik, J. Doody, T. Fulop, D. T. Garnier, R. Granetz, T. K. Gray, C. Holland, N. T. Howard, J. W. Hughes, J. H. Irby, V. A. Izzo, et al., J. Plasma Phys. 86, 865860502 (2020).

Download references

Funding

This research was supported by the Rosatom State Atomic Energy Corporation within the framework of contract no. 313/1671-D “Research and Development Aimed at Justification of Conceptual Project of a Tokamak with Reactor Technologies” between Science and Innovations JSC and Private Institution ITER Project Center from September 5, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Portnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portnov, D.V., Vysokikh, Y.G., Kashchuk, Y.A. et al. Tokamak with Reactor Technologies (TRT): Preliminary Analysis of Nuclear Energy Release in Toroidal Field Coils. Plasma Phys. Rep. 47, 1285–1290 (2021). https://doi.org/10.1134/S1063780X21110234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21110234

Keywords:

Navigation