Skip to main content
Log in

Cylindrical and spherical dust-ion-acoustic modified Gardner solitons in dusty plasmas with two-temperature superthermal electrons

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A rigorous theoretical investigation has been performed on the propagation of cylindrical and spherical Gardner solitons (GSs) associated with dust-ion-acoustic (DIA) waves in a dusty plasma consisting of inertial ions, negatively charged immobile dust, and two populations of kappa distributed electrons having two distinct temperatures. The well-known reductive perturbation method has been used to derive the modified Gardner (mG) equation. The basic features (amplitude, width, polarity, etc.) of nonplanar DIA modified Gardner solitons (mGSs) have been thoroughly examined by the numerical analysis of the mG equation. It has been found that the characteristics of the nonplanar DIA mGSs significantly differ from those of planar ones. It has been also observed that kappa distributed electrons with two distinct temperatures significantly modify the basic properties of the DIA solitary waves and that the plasma system under consideration supports both compressive and rarefactive DIA mGSs. The present investigation should play an important role for understanding localized electrostatic disturbances in space and laboratory dusty plasmas where stationary negatively charged dust, inertial ions, and superthermal electrons with two distinct temperatures are omnipresent ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  2. M. Horanyi and D. A. Mendis, Astrophys. J. 307, 800 (1986).

    Article  ADS  Google Scholar 

  3. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  4. G. Northrop, Phys. Scr. 75, 475 (1992).

    Article  ADS  Google Scholar 

  5. F. Verheest, Waves in Dusty Space Plasmas (Kluwer Academic, London, 2001).

    Google Scholar 

  6. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 418 (1994).

    Article  ADS  Google Scholar 

  7. F. Verheest, Space Sci. Rev. 77, 267 (1996).

    Article  ADS  Google Scholar 

  8. J. H. Chu, J. B. Du, and I. Lin, J. Phys. D 27, 296 (1994).

    Article  ADS  Google Scholar 

  9. P. K. Shukla and V. P. Slin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  10. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  11. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  12. P. K. Shukla and M. Rosenberg, Phys. Plasmas 6, 1038 (1999).

    Article  ADS  Google Scholar 

  13. S. I. Popel, A. P. Golub, and T. V. Losseva, Phys. Rev. E 67, 056402 (2003).

    Article  ADS  Google Scholar 

  14. A. A. Mamun, Phys. Lett. A 372, 1490 (2008).

    Article  ADS  MATH  Google Scholar 

  15. S. K. El-Labany, E. F. El-Sharmy, and S. A. El-Warraki, Astrophys. Space Sci. 315, 287 (2008).

    Article  ADS  Google Scholar 

  16. A. A. Mamun, N. Jahan, and P. K. Shukla, J. Plasma Phys. 75, 413 (2009).

    Article  ADS  Google Scholar 

  17. H. Alinejad and A. A. Mamun, Phys. Plasmas 17, 123704 (2010).

    Article  ADS  Google Scholar 

  18. H. Alinejad, Astrophys. Space Sci. 327, 131 (2010).

    Article  ADS  MATH  Google Scholar 

  19. H. Alinejad, Astrophys. Space Sci. 334, 331 (2011).

    Article  ADS  MATH  Google Scholar 

  20. M. M. Hossain, A. A. Mamun, and K. S. Ashrafi, Phys. Plasmas 18, 103704 (2011).

    Article  ADS  Google Scholar 

  21. N. R. Kundu, M. M. Masud, K. S. Ashrafi, and A. A. Mamun, Astrophys. Space Sci. 343, 279 (2013).

    Article  ADS  Google Scholar 

  22. M. M. Masud, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 215 (2013).

    Article  ADS  Google Scholar 

  23. T. Akhter, M. M. Hossain, and A. A. Mamun, Astrophys. Space Sci. 344, 105 (2013).

    Article  ADS  MATH  Google Scholar 

  24. T. Akhter, M. M. Hossain, and A. A. Mamun, Astrophys. Space Sci. 345, 283 (2013).

    Article  ADS  Google Scholar 

  25. M. M. Masud, M. Asaduzzaman, and A. A. Mamun, Phys. Plasmas 19, 103706 (2012).

    Article  ADS  Google Scholar 

  26. M. M. Masud, N. R. Kundu, and A. A. Mamun, Can. J. Phys. 91, 530 (2013).

    Article  Google Scholar 

  27. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  28. S. P. Christon, D. G. Mitchell, D. J. Williams, et al., J. Geophys. Res. 93, 2562 (1988).

    Article  ADS  Google Scholar 

  29. A. Hasegawa, K. Mima, and M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985).

    Article  ADS  Google Scholar 

  30. S. M. Krimigis, J. F. Carbary, E. P. Keath, et al., J. Geophys. Res. 88, 8871 (1983).

    Article  ADS  Google Scholar 

  31. M. Maksimovic, V. Pierrard, and J. F. Lemaire, Astron. Astrophys. 324, 725 (1997).

    ADS  Google Scholar 

  32. V. Pierrard and J. Lemaire, J. Geophys. Res. 101, 7923 (1996).

    Article  ADS  Google Scholar 

  33. V. Pierrard, H. Lamy, and J. Lemaire, J. Geophys. Res. 109, A02118 (2004).

    Article  Google Scholar 

  34. D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).

    Article  ADS  Google Scholar 

  35. M. A. Hellberg, R. L. Mace, T. K. Baluku, et al., Phys. Plasmas 16, 094701 (2009).

    Article  ADS  Google Scholar 

  36. N. Dubouloz, R. A. Treumann, R. Pottelette, and M. Malingre, Geophys. Rev. Lett. 98, 17415 (1993).

    Google Scholar 

  37. J. S. Pickett, L.-J. Chen, R. L. Mutel, et al., Adv. Space Res. 41, 1666 (2008).

    Article  ADS  Google Scholar 

  38. H. Derfler and T. C. Simonen, Phys. Fluids 12, 269 (1969).

    Article  ADS  MATH  Google Scholar 

  39. D. Henry and J. P. Treguier, J. Plasma Phys. 8, 311 (1972).

    Article  ADS  Google Scholar 

  40. S. K. Kundu, D. K. Ghosh, P. Chatterjee, and B. Das, Bulg. J. Phys. 38, 409 (2011).

    Google Scholar 

  41. T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas 17, 053702 (2010).

    Article  ADS  Google Scholar 

  42. N. S. Saini, B. S. Chahal, A. S. Bains, and T. S. Gill, AIP Conf. Proc. 1397, 331 (2011).

    Article  ADS  Google Scholar 

  43. A. Shah, S. Mahmood, and Q. Haque, Phys. Plasmas 18, 114501 (2011).

    Article  ADS  Google Scholar 

  44. S. Hussain, Chin. Phys. Lett. 29, 065202 (2012).

    Article  ADS  Google Scholar 

  45. B. Xie, K. He, and Z. Huang, Phys. Plasmas 6, 3808 (1999).

    Article  ADS  Google Scholar 

  46. S. G. Tagare, Phys. Plasmas 4, 3167 (1997).

    Article  ADS  Google Scholar 

  47. M. M. Masud and A. A. Mamun, JETP Lett. 96, 765 (2013).

    Article  ADS  Google Scholar 

  48. S. Devanandhan, S. V. Singh, and G. S. Lakhina, Phys. Scr. 84, 025507 (2011).

    Article  ADS  Google Scholar 

  49. C. Bedi and T. S. Gill, Phys. Plasmas 19, 062109 (2012).

    Article  ADS  Google Scholar 

  50. S. Sultana, I. Kourakis, and M. A. Hellberg, Plasma Phys. Controlled Fusion 54, 105016 (2012).

    Article  ADS  Google Scholar 

  51. T. K. Baluku, M. A. Hellberg, and R. L. Mace, J. Geophys. Res. 116, A04227 (2011).

    Article  Google Scholar 

  52. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).

    Article  ADS  Google Scholar 

  53. U. N. Ghosh, D. K. Ghosh, P. Chatterjee, et al., Astrophys. Space Sci. 343, 265 (2013).

    Article  ADS  Google Scholar 

  54. F. Deeba and A. A. Mamun, Open J. Acoust. 1, 70 (2011).

    Article  ADS  Google Scholar 

  55. D. K. Ghosh, P. Chatterjee, and U. N. Ghosh, Phys. Plasmas 19, 033703 (2012).

    Article  ADS  Google Scholar 

  56. D. K. Ghosh, U. N. Ghosh, and P. Chatterjee, J. Plasma Phys. 79, 37 (2013).

    Article  ADS  Google Scholar 

  57. M. Asaduzzaman and A. A. Mamun, J. Plasma Phys. 78, 125 (2012).

    Article  ADS  Google Scholar 

  58. A. Mannan and A. A. Mamun, Phys. Rev. E 84, 026408 (2011).

    Article  ADS  Google Scholar 

  59. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  60. P. K. Shukla, Phys. Plasmas 7, 1044 (2000).

    Article  ADS  Google Scholar 

  61. P. K. Shukla and A. A. Mamun, IEEE Trans. Plasma Sci. 29, 221 (2001).

    Article  ADS  Google Scholar 

  62. F. Sayeed and A. A. Mamun, Phys. Plasmas 14, 014501 (2007).

    Article  ADS  Google Scholar 

  63. M. S. Alam, M. M. Masud, and A. A. Mamun, Chin. Phys. B 22, 115202 (2013).

    Article  ADS  Google Scholar 

  64. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Astrophys. Space Sci. 333, 263 (2011).

    Article  ADS  Google Scholar 

  65. M. M. Masud, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space Sci. 343, 221 (2013).

    Article  ADS  Google Scholar 

  66. N. N. Rao, J. Plasma Phys. 59, 561 (1998).

    Article  ADS  Google Scholar 

  67. M. Y. Yu and H. Luo, Phys. Plasmas 15, 024504 (2008).

    Article  ADS  Google Scholar 

  68. B. Buti, Phys. Lett. A 76, 251 (1980).

    Article  ADS  Google Scholar 

  69. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).

    Article  ADS  Google Scholar 

  70. M. Y. Yu and P. K. Shukla, Phys. Rev. A 37, 9 (1988).

    Article  Google Scholar 

  71. B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

    Article  Google Scholar 

  72. E. G. Tsikarishvili, N. L. Tsintsadze, and D. D. Tskhakaya, Sov. J. Plasma Phys. 2, 171 (1976).

    ADS  Google Scholar 

  73. P. Schippers, M. Blanc, N. André, et al., J. Geophys. Res. 113, A07208 (2008).

    Article  Google Scholar 

  74. K. K. Ghosh, B. Paul, C. Das, and S. N. Paul, J. Phys. A 41, 335501 (2008).

    Article  MathSciNet  Google Scholar 

  75. M. Shalaby, S. K. El-Labany, E. F. El-Shamy, and L. S. El-Sherif, Chaos Solitons Fractals 41, 1208 (2009).

    Article  ADS  Google Scholar 

  76. W. M. Moslem and W. F. El-Taibany, Phys. Plasmas 12, 122309 (2005).

    Article  ADS  Google Scholar 

  77. P. Chatterjee and R. Roychoudhury, Can. J. Phys. 75, 337 (1997).

    Article  ADS  Google Scholar 

  78. K. Roy, T. Saha, and P. Chatterjee, Astrophys. Space Sci. 342, 125 (2012).

    Article  ADS  Google Scholar 

  79. O. Rahman and A. A. Mamun, Phys. Plasmas 18, 083703 (2011).

    Article  ADS  Google Scholar 

  80. G. S. Selwyn, Jpn. J. Appl. Phys. 32, 3068 (1993).

    Article  ADS  Google Scholar 

  81. J. Winter, Plasma Phys. Controlled Fusion 340, 1201 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.S., Masud, M.M. & Mamun, A.A. Cylindrical and spherical dust-ion-acoustic modified Gardner solitons in dusty plasmas with two-temperature superthermal electrons. Plasma Phys. Rep. 39, 1011–1018 (2013). https://doi.org/10.1134/S1063780X14010012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14010012

Keywords

Navigation