Skip to main content
Log in

Plasma kinetics of ethanol conversion in a glow discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Petitpas, J. D. Rollier, A. Darmon, et al., Int. J. Hydrogen Energy 32, 2848 (2007).

    Article  Google Scholar 

  2. J. Warnatz, U. Maas, and R. Dibble, Combustion (Springer, Berlin, 2001).

    MATH  Google Scholar 

  3. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008).

    Book  Google Scholar 

  4. Y. Sekine, K. Urasaki, S. Kado, et al., Energy Fuels 18, 455 (2004).

    Article  Google Scholar 

  5. A. Yanguas-Gil, J. L. Hueso, J. Cotrino, et al., Appl. Phys. Lett. 85, 4004 (2004).

    Article  ADS  Google Scholar 

  6. O. Aubry, C. Met, A. Khacef, and J. M. Cormier, Chem. Eng. J. 106, 241 (2005).

    Article  Google Scholar 

  7. W. Wang, C. Zhu, and Y. Cao, Int. J. Hydrogen Energy 35, 1951 (2010).

    Article  Google Scholar 

  8. V. Ya. Chernyak, S. V. Olszewski, V. V. Yukhymenko, et al., IEEE Trans. Plasma Sci. 36, 2933 (2008).

    Article  ADS  Google Scholar 

  9. A. I. Shchedrin, D. S. Levko, V. Ya. Chernyak, et al., JETP Lett. 88, 99 (2008).

    Article  ADS  Google Scholar 

  10. A. I. Shchedrin, D. S. Levko, V. Ya. Chernyak, et al., Tech. Phys. Lett. 35, 449 (2009).

    Article  ADS  Google Scholar 

  11. Z. Yan, L. Chen, and H. Wang, J. Phys. D 41, 155205 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  12. www.iop.kiev.ua/~plasmachemgroup/

  13. I. A. Soloshenko, V. V. Tsiolko, S. S. Pogulay, et al., Plasma Sources Sci. Technol. 16, 56 (2007).

    Article  ADS  Google Scholar 

  14. Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005).

    Article  ADS  Google Scholar 

  15. R. Rejoub, C. D. Morton, B. G. Lindsay, and R. F. Stebbings, J. Chem. Phys. 118, 1756 (2003).

    Article  ADS  Google Scholar 

  16. R. Rejoub, B. G. Lindsay, and R. F. Stebbings, Phys. Rev. A 65, 042713 (2002).

    Article  ADS  Google Scholar 

  17. A. Dasgupta, M. Blaha, and J. L. Giuliani, Phys. Rev. A 61, 012703 (2000).

    Article  ADS  Google Scholar 

  18. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  19. T. Shirai, T. Tabata, H. Tawara, and Y. Itikawa, Atomic Data Nucl. Data Tables 80, 147 (2002).

    Article  ADS  Google Scholar 

  20. D. A. Erwin and J. A. Kunc, Phys. Rev. A 72, 052719 (2005).

    Article  ADS  Google Scholar 

  21. CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC, New York, 2003).

    Google Scholar 

  22. http://www-mae.ucsd.edu/~combustion/cermech/index. html

  23. T. Miyauchi, Y. Mori, and A. Imamura, Symp. Int. Combust. 16, 1073 (1977).

    Article  Google Scholar 

  24. N. M. Marinov, Int. J. Chem. Kinet. 31, 183 (1999).

    Article  Google Scholar 

  25. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 411 (1992).

    Article  ADS  Google Scholar 

  26. A. F. Wagner and J. M. Bowman, J. Phys. Chem. 91, 5314 (1987).

    Article  Google Scholar 

  27. V. Lissianski, H. Yang, Z. Qin, et al., Chem. Phys. Lett. 240, 57 (1985).

    Article  ADS  Google Scholar 

  28. M. V. Petrova and F. Williams, Combust. Flame 144, 526 (2006).

    Article  Google Scholar 

  29. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).

    Article  ADS  Google Scholar 

  30. H. Du and J. Hessler, J. Phys. Chem. 100, 974 (1996).

    Article  Google Scholar 

  31. W. B. DeMore, S. P. Sander, D. M. Golden, et al., JPL Publication 97-4, Evaluation No. 12 (1997).

  32. J. Edelbuttel-Einhaus, K. Hoyermann, G. Rohde, and J. Seeba, Symp. Int. Combust. 24, 661 (1992).

    Article  Google Scholar 

  33. W. Tsang, J. Phys. Chem. Ref. Data 16, 471 (1987).

    Article  ADS  Google Scholar 

  34. W. Forst, J. Phys. Chem. 95, 3612 (1991).

    Article  Google Scholar 

  35. R. Humpfer, H. Oser, H. H. Grotheer, and T. Just, Symp. Int. Combust. 25, 721 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Levko.

Additional information

Original Russian Text © D.S. Levko, A.N. Tsymbalyuk, A.I. Shchedrin, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 11, pp. 991–1000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levko, D.S., Tsymbalyuk, A.N. & Shchedrin, A.I. Plasma kinetics of ethanol conversion in a glow discharge. Plasma Phys. Rep. 38, 913–921 (2012). https://doi.org/10.1134/S1063780X1210008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1210008X

Keywords

Navigation