Skip to main content
Log in

Reversal of the hall current and amplification of the magnetorotational instability in a weakly ionized plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A criterion for the development of a magnetorotational instability in a weakly ionized dusty plasma is considered. A dispersion relation for the wavenumber and the growth rate of an unstable perturbation is derived for an arbitrary angle between the wave vector and magnetic field. It is shown that the presence of dust grains can reverse the direction of the Hall current in the plasma and can shift the instability threshold to shorter wavelengths. Under certain conditions, Alfvén fluctuations of arbitrary scale can be unstable. The Hall current reversal is found to have a strong effect on the development of a magnetorotational instability when the Alfvén resonance frequency in a weakly ionized plasma is close to the rotation frequency of the accretion disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  2. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).

    Article  ADS  Google Scholar 

  3. M. Wardle, Month. Not. Roy. Astron. Soc. 307, 849 (1999).

    Article  ADS  Google Scholar 

  4. S. A. Balbus and C. Terquem, Astrophys. J. 552, 235 (2001).

    Article  ADS  Google Scholar 

  5. R. Salmeron and M. Wardle, Month. Not. Roy. Astron. Soc. 361, 45 (2005).

    Article  ADS  Google Scholar 

  6. E. Liverts and M. Mond, Astrophys. J. 666, 1226 (2007).

    Article  ADS  Google Scholar 

  7. T. Umebayashi and T. Nakano, Month. Not. Roy. Astron. Soc. 243, 103 (1990).

    ADS  Google Scholar 

  8. M. Wardle and S. Ng, Month. Not. Roy. Astron. Soc. 303, 239 (1999).

    Article  ADS  Google Scholar 

  9. S. J. Desch, Astrophys. J. 608, 509 (2004).

    Article  ADS  Google Scholar 

  10. B. P. Pandey and M. Wardle, Month. Not. Roy. Astron. Soc. 371, 1014 (2006).

    Article  ADS  Google Scholar 

  11. C. F. Gammie, Astrophys. J. 457, 355 (1996).

    Article  ADS  Google Scholar 

  12. A. K. Nekrasov, Phys. Plasmas 14, 062107 (2007).

    Article  ADS  Google Scholar 

  13. A. K. Nekrasov, Phys. Plasmas 15, 032907 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. K. Nekrasov, Phys. Plasmas 15, 102903 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. K. Nekrasov, Astrophys. J. 704, 80 (2009).

    Article  ADS  Google Scholar 

  16. R. Keppens, F. Casse, and J. Goedbloed, Astrophys. J. Lett. 569, 121 (2002).

    Article  ADS  Google Scholar 

  17. A. B. Mikhailovskii, D. G. Lominadze, A. P. Churikov, et al., Zh. Eksp. Teor. Fiz. 133, 183 (2008) [JETP 106, 154 (2008)].

    Google Scholar 

  18. E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].

    Google Scholar 

  19. R. Salmeron and M. Wardle, Month. Not. Roy. Astron. Soc. 388, 1223 (2007).

    ADS  Google Scholar 

  20. A. B. Mikhailovskii, S. V. Vladimirov, J. G. Lominadze, et al., Phys. Plasmas 15, 014504 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Prudskikh, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 10, pp. 934–943.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudskikh, V.V. Reversal of the hall current and amplification of the magnetorotational instability in a weakly ionized plasma. Plasma Phys. Rep. 37, 871–880 (2011). https://doi.org/10.1134/S1063780X11080071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11080071

Keywords

Navigation