Skip to main content
Log in

Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and S. Ali, Phys. Plasmas 12, 114502 (2005).

    Article  ADS  Google Scholar 

  2. S. Ali and P. K. Shukla, Phys. Plasmas 13, 022313 (2006).

    Article  ADS  Google Scholar 

  3. W. M. Moslem, P. K. Shukla, S. Ali, and R. Schlickeiser, Phys. Plasmas 14, 042107 (2007).

    Article  ADS  Google Scholar 

  4. W. F. El-Taibany and M. Wadati, Phys. Plasmas 14, 042302 (2007).

    Article  ADS  Google Scholar 

  5. A. Mushtaq, Phys. Plasmas 14, 113701 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Ali, W. M. Moslem, I. Kourakis, and P. K. Shukla, New J. Phys. 10, 023007 (2008).

    Article  ADS  Google Scholar 

  7. S. A. Khan, W. Masood, and M. Siddiq, Phys. Plasmas 16, 013701 (2009).

    Article  ADS  Google Scholar 

  8. M. Sadiq, S. Ali, and R. Sabry, Phys. Plasmas 16, 013706 (2009).

    Article  ADS  Google Scholar 

  9. B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 012304 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. A. Khan and A. Mushtaq, Phys. Plasmas 14, 083703 (2007).

    Article  ADS  Google Scholar 

  11. W. Masood, A. Mushtaq, and S. A. Khan, Phys. Plasmas 14, 123702 (2007).

    Article  ADS  Google Scholar 

  12. A. P. Misra, S. Samanta, and A. R. Chowdhury, J. Plasma Phys. 74, 197 (2007).

    ADS  Google Scholar 

  13. S. Mahmood, Phys. Plasmas 15, 014502 (2008).

    Article  ADS  Google Scholar 

  14. M. Tribeche, S. Ghebache, K. Aoutou, and T. H. Zerguini, Phys. Plasmas 15, 033702 (2008).

    Article  ADS  Google Scholar 

  15. H. Ur-Rehman, S. A. Khan, W. Masood, and M. Siddiq, Phys. Plasmas 15, 124501 (2008).

    Article  ADS  Google Scholar 

  16. S. A. Khan, S. Mahmood, and A. M. Mirza, Phys. Lett. A 372, 148 (2008).

    Article  ADS  MATH  Google Scholar 

  17. Y.-Y. Wang and J.-F. Zhang, Phys. Lett. A 372, 6509 (2008).

    Article  ADS  MATH  Google Scholar 

  18. W. Masood, M. Siddiq, Sh. Nargis, and A. M. Mirza, Phys. Plasmas 16, 013705 (2009).

    Article  ADS  Google Scholar 

  19. M. Salimullah, I. Zeba, Ch. Uzma, et al., Phys. Lett. A 372, 2291 (2008).

    Article  ADS  MATH  Google Scholar 

  20. P. K. Shukla, J. Plasma Phys. 74, 107 (2007).

    ADS  Google Scholar 

  21. S. Ali and P. K. Shukla, Eur. Phys. J. D 41, 319 (2007).

    Article  ADS  Google Scholar 

  22. P. K. Shukla and L. Stenflo, Phys. Lett. A 355, 378 (2006).

    Article  ADS  Google Scholar 

  23. W. Masood, M. Salimullah, and H. A. Shah, Phys. Lett. A 372, 6757 (2008).

    Article  ADS  MATH  Google Scholar 

  24. Sh. Bagchi, K. R. Chowdhury, A. P. Mishra, and A. R. Chowdhury, Int. J. Theor. Phys. 48, 1132 (2009).

    Article  MATH  Google Scholar 

  25. M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, Phys. Plasmas 16, 014502 (2009).

    Article  ADS  Google Scholar 

  26. L. Stenflo, P. K. Shukla, and M. Marklund, Europhys. Lett. 74, 844 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. K. Shukla, Phys. Lett. A 352, 242 (2006).

    Article  ADS  Google Scholar 

  28. A. P. Misra and C. Bhowmik, Phys. Plasmas 16, 012103 (2009).

    Article  ADS  Google Scholar 

  29. S. Ali and P. K. Shukla, Phys. Plasmas 13, 102112 (2006).

    Article  ADS  Google Scholar 

  30. S. Ali and P. K. Shukla, Phys. Lett. A 372, 4827 (2008).

    Article  ADS  MATH  Google Scholar 

  31. M. V. Kuzelev and A. A. Rukhadze, Usp. Fiz. Nauk 169, 687 (1999) [Phys. Usp. 42, 603 (1999)].

    Article  Google Scholar 

  32. G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).

    Article  ADS  Google Scholar 

  33. A. E. Dubinov, Prikl. Mekh. Tekh. Fiz. 48, 3 (2007).

    Google Scholar 

  34. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 33, 935 (2007) [Plasma Phys. Rep. 33, 859 (2007)].

    Google Scholar 

  35. A. E. Dubinov, Fiz. Plazmy 33, 239 (2007) [Plasma Phys. Rep. 33, 210 (2007)].

    Google Scholar 

  36. A. E. Dubinov and M. A. Sazonkin, Zh. Tekh. Fiz. 78(9), 29 (2008) [Tech. Phys. 53, 1129 (2008)].

    Google Scholar 

  37. A. E. Dubinov and M. A. Sazonkin, Fiz. Plazmy 35, 18 (2009) [Plasma Phys. Rep. 35, 14 (2009)].

    Google Scholar 

  38. B. M. Mladek, G. Kahl, and M. Neumann, J. Chem. Phys. 124, 064503 (2006).

    Article  ADS  Google Scholar 

  39. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 34, 442 (2008) [Plasma Phys. Rep. 34, 403 (2008)].

    Google Scholar 

  40. F. Haas and M. Lazar, Phys. Rev. E 77, 046404 (2008).

    Article  ADS  Google Scholar 

  41. B. Eliasson and P. K. Shukla, Phys. Scr. 78, 025503 (2008).

    Article  ADS  Google Scholar 

  42. A. E. Dubinov, A. A. Dubinova, and M. A. Sazonkin, Radiotekh. Élektron. 55, 968 (2010) [J. Comm. Technol. Electron. 55, 907 (2010)].

    Google Scholar 

  43. G. N. Pykhteev and I. N. Meleshko, Properties and Calculation of Polylogarithms (Izd. BGU, Minsk, 1976) [in Russian].

    Google Scholar 

  44. A. A. Dubinova, Zh. Tekh. Fiz. 79(2), 48 (2009) [Tech. Phys. 54, 210 (2009)].

    Google Scholar 

  45. V. F. Zaitsev and A. D. Polyanin, Handbook of Ordinary Differential Equations (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Dubinov, D.Yu. Kolotkov, M.A. Sazonkin, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 1, pp. 68–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinov, A.E., Kolotkov, D.Y. & Sazonkin, M.A. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains. Plasma Phys. Rep. 37, 64–74 (2011). https://doi.org/10.1134/S1063780X10121037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10121037

Keywords

Navigation