Skip to main content
Log in

Concerning the width of spark channels with different polarities in submicrosecond sliding discharges in noble gases

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Previously, the parameters of submicrosecond (with a duration of <200 ns) multichannel high-current discharges sliding along a ceramic surface in Ne, Ar, and Xe were studied only for the negative polarity of the applied voltage. The experimental data indicate that the channels expand in the transverse direction mainly due to electron drift from the channel surface layer under the action of the electric field perpendicular to the channel axis and subsequent gas ionization by these electrons. To investigate mechanisms for the channel development in a sliding discharge—in particular, to determine the contribution of electron drift—it is necessary to carry out experiments similar to those performed earlier for the opposite polarity of the applied voltage. Here, the results of measurements of the widths of the spark channels of negativeand positive-polarity sliding discharges excited in Ne, Ar, and Xe at pressures of 30 and 100 kPa are presented and discussed. It is shown that, depending on the pressure and sort of gas, the averaged optical width of positive-polarity channels is smaller by a factor of 1.27–1.60 than that of negative-polarity channels. The experimental data are analyzed using the theory of propagation of ionization waves with different polarities in gases. Analysis has shown that electron diffusion contributes insignificantly to channel expansion and that, for both polarities, the channel expansion rate exceeds the electron drift velocity in the transverse electric field near the channel. In the framework of the so-called approximation of nonlocalized initial conditions, the measured ratio between of the widths of negativeand positive-polarity channels and their relation to the electron mobility are explained by the channel expansion governed by both electron drift and primary free electrons produced by a short-term source in a narrow region ahead of the front of the expansion wave. Numerical simulations show that the width of this region is comparable with that of the wave front and is more than one order of magnitude smaller than the observed channel radius. Gas photoionization by the channel radiation can serve as a source of primary electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Trusov, J. Phys. D 32, 845 (1999).

    Article  ADS  Google Scholar 

  2. K. K. Trusov, J. Phys. D 40, 786 (2007).

    Article  ADS  Google Scholar 

  3. K. K. Trusov, Fiz. Plazmy 34, 374 (2008) [Plasma Phys. Rep. 34, 338 (2008)].

    Google Scholar 

  4. U. Ebert, W. Saarloos, and C. Caroli, Phys. Rev. E 55, 1530 (1997).

    Article  ADS  Google Scholar 

  5. K. K. Trusov, J. Phys. D 39, 335 (2006).

    Article  ADS  Google Scholar 

  6. P. Stritzke, I. Sander, and H. Raether, J. Phys. D 10, 2285 (1977).

    Article  ADS  Google Scholar 

  7. S. V. Pancheshnyi, M. M. Nudnova, and A. Yu. Starikovskii, Phys. Rev. E 71, 016 407 (2005).

    Article  Google Scholar 

  8. M. M. Nudnova and A. Yu. Starikovskii, J. Phys. D 41, 234 003 (2008).

    Article  Google Scholar 

  9. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D 41, 234 005 (2008).

    Article  Google Scholar 

  10. N. Yu. Babaeva and G. V. Naidis, J. Phys. D 29, 2423 (1996).

    Article  ADS  Google Scholar 

  11. S. V. Pancheshnyi and A. Yu. Starikovskii, J. Phys. D 36, 2683 (2003).

    Article  ADS  Google Scholar 

  12. J. K. Wright, Proc. Roy. Soc. A 280, 23 (1964).

    Article  ADS  Google Scholar 

  13. D. L. Turcotte and R. S. B. Ong, J. Plasma Phys. 2, 145 (1968).

    Article  ADS  Google Scholar 

  14. R. Klingbeil, D. A. Tidman, and R. F. Fernsler, Phys. Fluids 15, 1969 (1972).

    Article  ADS  Google Scholar 

  15. S. K. Dhali and P. F. Williams, J. Appl. Phys. 62, 4696 (1987).

    Article  ADS  Google Scholar 

  16. M. I. D’yakonov and V. Yu. Kachorovskii, Zh. Éksp. Teor. Fiz. 94(5), 321 (1988) [Sov. Phys. JETP 67, 1049 (1988)].

    Google Scholar 

  17. M. I. D’yakonov and V. Yu. Kachorovskii, Zh. Éksp. Teor. Fiz. 95, 1850 (1989) [Sov. Phys. JETP 68, 1070 (1989)].

    Google Scholar 

  18. A. N. Lagar’kov and I. M. Rutkevich, Electric Breakdown Waves in Bounded Plasmas (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  19. M. C. Wang and E. E. Kunhardt, Phys. Rev. A 42, 2366 (1990).

    Article  ADS  Google Scholar 

  20. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  21. P. A. Vitello, B. M. Penetrante, and J. N. Bardsley, Phys. Rev. E 49, 5574 (1994).

    Article  ADS  Google Scholar 

  22. A. A. Kulikovsky, Phys. Rev. E 57, 7066 (1998).

    Article  ADS  Google Scholar 

  23. A. A. Kulikovsky, J. Phys. D 33, L5 (2000).

    Article  ADS  Google Scholar 

  24. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 34, 105 (2001).

    Article  ADS  Google Scholar 

  25. C. Montijn, W. Hundsdorfer, and U. Ebert, J. Comput. Phys. 219, 801 (2006).

    Article  ADS  MATH  Google Scholar 

  26. U. Ebert and W. Saarloos, Phys. D (Amsterdam) 146, 1 (2000).

    ADS  MATH  Google Scholar 

  27. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.K. Trusov, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 2, pp. 189–200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusov, K.K. Concerning the width of spark channels with different polarities in submicrosecond sliding discharges in noble gases. Plasma Phys. Rep. 36, 170–181 (2010). https://doi.org/10.1134/S1063780X1002008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1002008X

Keywords

Navigation