Skip to main content
Log in

Studies of the impurity pellet ablation in the high-temperature plasma of magnetic confinement devices

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The ablation of impurity pellets in tokamak and stellarator plasmas is investigated. Different mechanisms for shielding the heat fluxes from the surrounding plasma to the pellet surface are discussed. A model for impurity pellet ablation is developed that can account for both neutral and electrostatic shielding. It is shown that the experimental values of the impurity pellet ablation rate are well described by the neutral gas shielding model over a wide range of plasma temperatures and densities. Taking into account the electrostatic shielding leads to worse agreement between the predictions of the model and the experimental data; this result still remains unclear. Scaling laws are obtained that allow one to estimate the local ablation rate of impurity pellets made of various materials over a wide range of plasma parameters in the neutral gas shielding model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Kuteev, Zh. Tekh. Fiz. 69(9), 63 (1999) [Tech. Phys. 44, 1058 (1999)].

    Google Scholar 

  2. S. L. Milora, W. A. Houlberg, L. L. Lenguel, and V. Mertens, Nucl. Fusion 35, 657 (1995).

    Article  Google Scholar 

  3. M. Kaufmann, K. Lackner, and L. L. Lengyel, Nucl. Fusion 26, 171 (1986).

    Google Scholar 

  4. W. A. Houlberg, S. E. Milora, and S. E. Attenberger, Nucl. Fusion 28, 595 (1988).

    Google Scholar 

  5. V. A. Rozhansky, Fiz. Plazmy 15, 1101 (1989) [Sov. J. Plasma Phys. 15, 638 (1989)].

    Google Scholar 

  6. B. V. Kuteev, V. Yu. Sergeev, and L. D. Tsendin, Fiz. Plazmy 10, 1172 (1984) [Sov. J. Plasma Phys. 10, 675 (1984)].

    Google Scholar 

  7. V. A. Rozhansky, I. Yu. Veselova, and S. P. Voskoboynikov, Plasma Phys. Controlled Fusion 37, 399 (1995).

    Article  ADS  Google Scholar 

  8. V. Yu. Sergeev, K. V. Khlopenkov, B. V. Kuteev, et al., Plasma Phys. Controlled Fusion 40, 1785 (1998).

    Article  ADS  Google Scholar 

  9. L. Ledl, R. Burhenn, L. Lengyel, et al., Nucl. Fusion 44, 600 (2004).

    Article  ADS  Google Scholar 

  10. P. B. Parks, J. S. Leffler, and R. K. Fisher, Nucl. Fusion 28, 477 (1988).

    Google Scholar 

  11. B. V. Kuteev, Nucl. Fusion 35, 431 (1995).

    Article  Google Scholar 

  12. B. V. Kuteev and L. D. Tsendin, Res. Report No. NIFS-717 (National Inst. for Fusion Science, Nagoya, 2001).

    Google Scholar 

  13. B. V. Kuteev, V. Yu. Sergeev, and S. Sudo, Nucl. Fusion 35, 1167 (1995).

    Article  Google Scholar 

  14. J. G. Laframboise, Report No. 100 (Institute for Aerospace Studies, Univ. of Toronto, Toronto, 1966).

    Google Scholar 

  15. P. B. Parks and R. J. Turnball, Phys. Fluids 20, 1735 (1978).

    Article  ADS  Google Scholar 

  16. A. K. Macaulay, Nucl. Fusion 34, 44 (1994).

    Article  Google Scholar 

  17. P. B. Parks, Private communication.

  18. V. Yu. Sergeev and D. A. Polivaev, Fusion Eng. Design 34–35, 215 (1997).

    Article  Google Scholar 

  19. V. Yu. Sergeev, S. M. Egorov, B. V. Kuteev, et al., ECA 18B, 1364 (1994).

    Google Scholar 

  20. L. Ledl, R. Burhenn, V. Sergeev, et al., ECA 23J, 1477 (1999).

    Google Scholar 

  21. V. Yu. Sergeev, E. S. Marmar, J. A. Snipes, et al., Rev. Sci. Instrum. 63, 4984 (1992).

    Article  ADS  Google Scholar 

  22. V. M. Timokhin, V. Yu. Sergeev, and B. V. Kuteev, Fiz. Plazmy 27, 195 (2001) [Plasma Phys. Rep. 27, 181 (2001)].

    Google Scholar 

  23. N. Tamura, S. Sudo, K. V. Khlopenkov, et al., Plasma Phys. Controlled Fusion 45, 27 (2003).

    Article  ADS  Google Scholar 

  24. J. Wesson, Tokamaks (Clarendon, Oxford, 1997), p. 224.

    Google Scholar 

  25. V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, New York, 2001).

    Google Scholar 

  26. Yu. M. Kagan and V. I. Perel’, Usp. Fiz. Nauk 81, 409 (1963) [Sov. Phys. Usp. 6, 767 (1964)].

    Google Scholar 

  27. B. V. Kuteev, A. Yu. Kostryukov, and O. A. Bakhareva, Zh. Tekh. Fiz. 72(8), 1 (2002) [Tech. Phys. 47, 935 (2002)].

    Google Scholar 

  28. B. V. Kuteev, Yu. V. Martynenko, V. G. Skokov, et al., in Proceedings of the 31st EPS Conference on Plasma Physics, London, 2004, ECA 28G, P-1.205 (2004).

  29. B. V. Kuteev, V. Yu. Sergeev, and A. P. Umov, Fiz. Plazmy 14, 3 (1988) [Sov. J. Plasma Phys. 14, 1 (1988)].

    Google Scholar 

  30. B. B. Kadomtsev, Rep. Progr. Phys. 59, 91 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Sergeev, O.A. Bakhareva, B.V. Kuteev, M. Tendler, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 5, pp. 398–412.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeev, V.Y., Bakhareva, O.A., Kuteev, B.V. et al. Studies of the impurity pellet ablation in the high-temperature plasma of magnetic confinement devices. Plasma Phys. Rep. 32, 363–377 (2006). https://doi.org/10.1134/S1063780X06050023

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06050023

PACS numbers

Navigation