Skip to main content
Log in

Diagnostics of a nonequilibrium nitrogen plasma from the emission spectra of the second positive system of N2

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A method is proposed for determining the electron density N e and the electric field E in the non-equilibrium nitrogen plasma of a low-pressure discharge from the spectra of the second positive system of N2. The method is based on measuring the specific energy deposition in the plasma and the distribution of nitrogen molecules over the vibrational levels of the C 3Π u state, as well as on modeling this distribution for a given energy deposition. The fitting parameters of the model are the values of N e and E. A kinetic model of the processes governing the steady-state density of the C 3Π u nitrogen molecules is developed. The testing of this method showed it to be quite reliable. The method is of particular interest for diagnosing electrodeless discharges and provides detailed information on the processes occurring in the discharge plasma. Preliminary data are obtained on the plasma parameters in a cavity microwave discharge and an electrode microwave discharge. In particular, it is found that the electric field in an electrode microwave discharge in nitrogen is lower than that in a hydrogen discharge. This effect is shown to be produced by stepwise and associative processes with the participation of excited particles in nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 4 [in Russian].

    Google Scholar 

  2. Yu. A. Lebedev and M. V. Mokeev, Fiz. Plazmy 29, 1059 (2003) [Plasma Phys. Rep. 29, 983 (2003)].

    Google Scholar 

  3. Yu. B. Golubovskiĭ and V. M. Telezhko, Opt. Spektrosk. 54, 60 (1983).

    Google Scholar 

  4. A. V. Bodronosov, K. A. Vereshchagin, O. A. Gordeev, et al., Teplofiz. Vys. Temp. 34, 666 (1996).

    Google Scholar 

  5. R. A. Bleekrode, IEEE J. Quantum Electron. 5, 57 (1969).

    Google Scholar 

  6. M. Z. Novgorodov, V. N. Ochkin, and N. N. Sobolev, Zh. Tekh. Fiz. 40, 1268 (1970) [Sov. Phys. Tech. Phys. 15, 977 (1970)].

    Google Scholar 

  7. S. G. Gagarin, L. S. Polak, and D. I. Slovetskiĭ, IV All-Union Conference on Physics and Generators of Low-Temperature Plasmas, Alma-Ata, 1970, Abstracts of Papers, p. 33.

  8. A. D. Kosoruchkina and E. S. Trekhov, Zh. Tekh. Fiz. 45, 1082 (1975) [Sov. Phys. Tech. Phys. 20, 679 (1975)].

    Google Scholar 

  9. A. I. Lyutyĭ, L. D. Mel’nikova, and N. L. Sokolova, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 233 (1975).

  10. A. D. Kosoruchkina and E. S. Trekhov, Zh. Tekh. Fiz. 45, 1086 (1975) [Sov. Phys. Tech. Phys. 20, 682 (1975)].

    Google Scholar 

  11. A. V. Bodronosov, K. A. Vereshchagin, V. A. Gorshkov, et al., Zh. Tekh. Fiz. 64(1), 47 (1994) [Tech. Phys. 39, 25 (1994)].

    Google Scholar 

  12. S. De Benedictis and F. Cramarossa, Chem. Phys. 112, 363 (1987).

    Google Scholar 

  13. I. N. Meshcheryakov and T. P. Smirnova, Zh. Prikl. Spektrosk. 50, 369 (1989).

    Google Scholar 

  14. Yu. B. Golubovskiĭ, V. M. Telezhko, and D. G. Stoyanov, Opt. Spektrosk. 69, 322 (1990).

    Google Scholar 

  15. S. De Benedictes, G. Dilecce, and C. Gorse, Plasma Chem. Plasma Process. 11, 335 (1991).

    Google Scholar 

  16. S. N. Andreev, M. A. Kerimkulov, B. A. Mirzakarimov, et al., Zh. Éksp. Teor. Fiz. 101, 1732 (1992) [Sov. Phys. JETP 74, 923 (1992)].

    Google Scholar 

  17. A. M. Gubanov, Opt. Spektrosk. 31, 644 (1971).

    Google Scholar 

  18. S. De Benedictes and G. Dilecce, Chem. Phys. 192, 149 (1995).

    Google Scholar 

  19. V. G. Brovkin, D. Khmara, A. I. Klimov, et al., in Proceedings of the IV International Workshop on Microwave Discharges: Fundamentals and Applications, Zvenigorod, 2000 (Yanus-K, Moscow, 2001), p. 91.

    Google Scholar 

  20. Yu. A. Lebedev, Plasma Sources Sci. Technol. 4, 474 (1995).

    Article  ADS  Google Scholar 

  21. L. Bardosh and Yu. A. Lebedev, Zh. Tekh. Fiz. 68(12), 29 (1998) [Tech. Phys. 43, 1428 (1998)].

    Google Scholar 

  22. Yu. A. Lebedev, M. V. Mokeev, A. V. Tatarinov, and I. L. Epstein, in Proceedings of the IV International Workshop on Microwave Discharges: Fundamentals and Applications, Zvenigorod, 2000 (Yanus-K, Moscow, 2001), p. 187.

    Google Scholar 

  23. I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynskii, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1996; Atomizdat, Moscow, 1969).

    Google Scholar 

  24. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  25. Y. Itikawa, At. Data Nucl. Data Tables 14, 1 (1974).

    ADS  Google Scholar 

  26. S. Geltman, J. Quant. Spectrosc. Radiat. Transfer 13, 601 (1973).

    Article  Google Scholar 

  27. K. Onda, J. Phys. Soc. Jpn. 54, 4544 (1985).

    Article  ADS  Google Scholar 

  28. H. F. Winters, J. Chem. Phys. 44, 1472 (1966).

    Google Scholar 

  29. E. C. Zipf and R. W. McLaughlin, J. Planet Space Sci. 26, 449 (1978).

    ADS  Google Scholar 

  30. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    Google Scholar 

  31. D. C. Cartwright, S. Trajmar, A. Chuttjian, and W. Williams, Phys. Rev. A 16, 1041 (1977).

    ADS  Google Scholar 

  32. K. A. Berrington, P. G. Burke, and W. D. Robb, J. Phys. B 8, 2500 (1975).

    ADS  Google Scholar 

  33. S. Ormonde, K. Smith, B. W. Torres, and A. R. Davies, Phys. Rev. A 8, 262 (1973).

    Article  ADS  Google Scholar 

  34. G. J. Schulz, Phys. Rev. A 135, 938 (1964).

    Google Scholar 

  35. Plinciples of Laser Plasmas, Ed. by G. Bekefi (Wiley, New York, 1976; Énergoizdat, Moscow, 1982).

    Google Scholar 

  36. M. J. M. Boness and G. J. Schulz, J. Chem. Phys. 57, 2883 (1972).

    Google Scholar 

  37. G. Ya. Dynnikova, Prikl. Mekh. Tekh. Fiz., No. 5, 3 (1988).

  38. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  39. Nonequilibrium Oscillatory Kinetics, Ed. by M. Capitelli (New York, Springer-Verlag, 1986; Mir, Moscow, 1989).

    Google Scholar 

  40. G. D. Billing and E. R. Fisher, Chem. Phys. 43, 395 (1979).

    Article  Google Scholar 

  41. O. A. Gordeev and V. A. Shakhatov, Zh. Tekh. Fiz. 65(7), 40 (1995) [Tech. Phys. 40, 656 (1995)].

    Google Scholar 

  42. K. A. Vereshchagin, V. V. Smirnov, and V. A. Shakhatov, Zh. Tekh. Fiz. 67(5), 34 (1997) [Tech. Phys. 42, 487 (1997)].

    Google Scholar 

  43. P. V. Kozlov, in Proceedings of the International School-Seminar on Nonequilibrium Processes and Their Applications, Minsk, 1994, p. 97.

  44. J. Loureiro, C. M. Ferreira, M. Capitelli, et al., J. Phys. D 23, 1371 (1990).

    Article  ADS  Google Scholar 

  45. L. G. Piper, J. Chem. Phys. 88, 231 (1988).

    ADS  Google Scholar 

  46. G. N. Hays and H. G. Oskam, Chem. Phys. 59, 6088 (1973).

    Google Scholar 

  47. D. I. Slovetskiĭ, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  48. L. G. Piper, J. Chem. Phys. 88, 6911 (1988).

    ADS  Google Scholar 

  49. Yu. B. Golubovskiĭ, V. M. Telezhko, and D. G. Stoyanov, Opt. Spektrosk. 69, 322 (1990).

    Google Scholar 

  50. G. N. Hays and H. G. Oskam, J. Chem. Phys. 59, 1507 (1973).

    Google Scholar 

  51. L. G. Piper, J. Chem. Phys. 91, 864 (1989).

    ADS  Google Scholar 

  52. H. Brunet and J. Rocca-Serra, J. Appl. Phys. 57, 1574 (1985).

    ADS  Google Scholar 

  53. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, et al., IEEE Trans. Plasma Sci. 23, 750 (1995).

    Article  Google Scholar 

  54. L. A. Kuznetsova, N. E. Kuz’menko, Yu. Ya. Kuzyakov, and Yu. Ya. Plastinin, in Probabilities of Optical Transitions in Diatomic Molecules, Ed. by R. V. Khokhlov (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  55. A. Lofthus and P. H. Krupenie, J. Chem. Ref. Data 6, 307 (1977).

    Google Scholar 

  56. A. B. Calear and P. M. Wood, Trans. Faraday Soc. 67, 272 (1971).

    Google Scholar 

  57. J. M. Calo and R. C. Axtmann, J. Chem. Phys. 54, 1332 (1971).

    Google Scholar 

  58. J. W. Dreyer and D. Perner, Chem. Phys. Lett. 16, 169 (1972).

    Article  ADS  Google Scholar 

  59. V. P. Silakov, Fiz. Plazmy 14, 1209 (1988) [Sov. J. Plasma Phys. 14, 708 (1988)].

    Google Scholar 

  60. R. W. J. Henry, P. G. Burke, and A. L. Sinfailam, Phys. Rev. A 178, 218 (1969).

    ADS  Google Scholar 

  61. L. S. Polak, D. I. Slovetskiĭ, A. D. Urbas, and T. V. Fedoseeva, in Plasma Chemistry, Ed. by B. M. Smirnov (Atomizdat, Moscow, 1978), Vol. 5, p. 328 [in Russian].

    Google Scholar 

  62. N. A. Popov, in Proceedings of the International School on Nonequlibrium Processes and Their Applications, Minsk, 1992 (Luikov Heat and Mass Transfer Inst., Minsk, 1992), p. 123

    Google Scholar 

  63. B. M. Smirnov, Excited Atoms (Énergoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  64. R. C. Flagan and J. P. Appleton, J. Chem. Phys. 56, 1163 (1972).

    Article  Google Scholar 

  65. M. F. Golde and A. M. Moyle, Chem. Phys. Lett. 117, 375 (1985).

    Article  ADS  Google Scholar 

  66. L. G. Piper, J. Chem. Phys. 90, 7087 (1989).

    ADS  Google Scholar 

  67. F. R. Gilmore, E. Bauer, and J. W. McGowan, J. Quant. Spectrosc. Radiat. Transfer 9, 157 (1969).

    Article  Google Scholar 

  68. R. J. Donovan and D. Hussain, Chem. Rev. 70, 489 (1970).

    Article  Google Scholar 

  69. G. Black, T. C. Slanger, G. A. S. John, and B. A. Young, J. Chem. Phys. 51, 116 (1969).

    Article  Google Scholar 

  70. J. W. Dreyer and D. Perner, J. Chem. Phys. 58, 1195 (1973).

    Article  Google Scholar 

  71. D. Levron and A. Phelps, J. Chem. Phys. 69, 2260 (1978).

    Article  ADS  Google Scholar 

  72. L. S. Polak, D. I. Slovetskiĭ, and V. Todesaĭte, Khim. Vys. Énerg. 10, 64 (1976).

    Google Scholar 

  73. W. G. Clark and D. W. Setser, J. Chem. Phys. 84, 2225 (1980).

    ADS  Google Scholar 

  74. R. F. Heidner, D. G. Sutton, and S. N. Suchard, Chem. Phys. Lett. 37, 243 (1976).

    Article  ADS  Google Scholar 

  75. L. G. Piper, J. Chem. Phys. 87, 1625 (1987).

    Article  ADS  Google Scholar 

  76. I. M. Campbell and B. A. Thrush, Chem. Phys. Trans. Faraday Soc. 65(32), 32 (1969).

    Google Scholar 

  77. R. E. Lund and H. J. Oskam, Z. Phys. 219, 131 (1969).

    Google Scholar 

  78. W. J. Marinelli, W. J. Kessler, B. D. Green, and W. A. M. Blumberg, J. Chem. Phys. 90, 2167 (1989).

    Article  ADS  Google Scholar 

  79. R. Nagpal and P. K. Ghosh, J. Phys. D 23, 1663 (1990).

    Article  ADS  Google Scholar 

  80. L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).

    Article  ADS  Google Scholar 

  81. Yu. B. Golubovskiĭ and V. M. Telezhko, Teplofiz. Vys. Temp. 22, 428 (1984).

    Google Scholar 

  82. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskiĭ, et al., in Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  83. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharge (Nauka, Moscow, 1995; CRC, London, 1995).

    Google Scholar 

  84. Yu. M. Gershenzon, V. B. Rozenshteĭn, and S. Ya. Umanskiĭ in Plasma Chemistry (Atomizdat, Moscow, 1977), Vol. 4, p. 61 [in Russian].

    Google Scholar 

  85. D. A. Frank-Kamenetskiĭ, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  86. O. A. Gordeev and D. V. Khmara, Mat. Model. 13(9), 1 (2001).

    Google Scholar 

  87. L. S. Polak, M. Ya. Gol’denberg, and A. A. Levitskiĭ, Computational Methods in Chemical Kinetics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  88. V. V. Smirnov and V. I. Fabelinskiĭ, Pis’ma Zh. Éksp. Teor. Fiz. 28, 461 (1978) [JETP Lett. 28, 427 (1978)].

    Google Scholar 

  89. B. Massabieaux, G. Gousset, M. Lefebvre, et al., J. Phys. (Paris) 48, 1939 (1987).

    Google Scholar 

  90. Yu. A. Ivanov, L. S. Polak, and D. I. Slovetskiĭ, Teplofiz. Vys. Temp. 9, 1151 (1971).

    Google Scholar 

  91. A. Ricard, Rev. Phys. Appl. 24, 251 (1989).

    Google Scholar 

  92. C. S. Hyadon and O. M. Williams, J. Phys. D 9, 523 (1976).

    ADS  Google Scholar 

  93. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    ADS  Google Scholar 

  94. W. Roznerski and K. Leia, J. Phys. D 17, 297 (1984).

    Article  Google Scholar 

  95. V. L. Bychkov, A. V. Eletskiĭ, and B. M. Smirnov, in Plasma Chemistry (Atomizdat, Moscow, 1983), Vol. 10, p. 65 [in Russian].

    Google Scholar 

  96. B. Massabieaux, A. Plain, A. Ricard, and M. Capitelli, J. Phys. B 16, 1863 (1983).

    Article  ADS  Google Scholar 

  97. G. Dilecce, P. Ambrico, R. Bektursunova, and S. De Benedictis, in Proceedings of the XVI European Sectional Conference on Atomic and Molecular Physics of Ionized Gases and 5th International Conference on Reactive Plasmas, Grenoble, 2001, Vol. 1, p. 211.

  98. A. Broc, G. Dilecce, R. G. Sharafutdinov, et al., in Proceedings of the 15th International Symposium on Plasma Chemistry, Orleans (France), 2001, Vol. IV, p. 1285.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Lebedev, V.A. Shakhatov, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 1, pp. 58–74.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, Y.A., Shakhatov, V.A. Diagnostics of a nonequilibrium nitrogen plasma from the emission spectra of the second positive system of N2 . Plasma Phys. Rep. 32, 56–71 (2006). https://doi.org/10.1134/S1063780X06010065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06010065

Keywords

Navigation