Skip to main content
Log in

Experiments with the KEDR Detector at the \({{e}^{ + }}{{e}^{ - }}\) Collider VEPP-4M in the Energy Range \(\sqrt s \) = 1.84–3.88 GeV

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review presents the experiments performed with the KEDR detector at the \({{e}^{ + }}{{e}^{ - }}\) collider VEPP-4M in the energy range of \(\sqrt s \) = 1.84–3.88 GeV. The cross section of \({{e}^{ + }}{{e}^{ - }}\) annihilation to hadrons was measured at 22 points of this range and the search for narrow resonances was conducted below 3.1 GeV. The masses of \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) and \(\psi (2S)\) mesons were measured with a record accuracy better than \(3 \times {{10}^{{ - 6}}}\); their partial and total widths were determined. Measurements of the tau lepton mass and masses of charged and neutral \(D\) mesons were performed with high precision. The measurements of the \(\psi (3770)\) parameters are discussed, and attention is drawn to some inconsistency of the procedure employed by the Particle Data Group for determining its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

REFERENCES

  1. V. Petrov (VEPP-4 Team), “Status of the VEPP-4M electron-positron collider,” in Proceedings of the 4th Asian Particle Accelerator Conference, Indore, India, 2007, pp. 112–114. http://cern.ch/AccelConf/ a07/PAPERS/TUPMA008.pdf.

  2. V. Smaluk (VEPP-4 Team), “Status of VEPP-4M collider at BINP,” in Proceedings of 21st Russian Particle Accelerator Conference, Zvenigorod, Russia, 2008, pp. 79–81. http://cern.ch/AccelConf/r08/papers/ MOBAU03.pdf.

  3. N. Aleshaev et al., Preprint IYaF 2011-20 (Institute of Nuclear Physics, Novosibirsk, 2011).

    Google Scholar 

  4. O. L. Rezanova, A. G. Shamov, and V. N. Zhilich, “Calibration of the KEDR detector tagging system with two-photon lepton pair production,” J. Instrum. 12, C07034 (2017).

    Article  Google Scholar 

  5. E. B. Levichev, A. N. Skrinsky, Yu. A. Tikhonov, and K. Yu. Todyshev, “High-precision particle mass measurements using the KEDR detector at the VEPP-4M collider,” Phys. Usp., 57, 66–79 (2014).

  6. Tomaradze et al., “High precision measurements of the masses of the \({{D}^{0}}\) and \({{K}_{s}}\) mesons,” Phys. Rev. D 89, 031501 (2014).

    Article  ADS  Google Scholar 

  7. Yu. I. Maltseva et al., “VEPP-5 injection complex performance improvement for two collider operation,” https://doi.org/10.18429/JACoW-RuPAC2018-TUZMH02

  8. A. Sokolov and I. M. Ternov, “On polarization and spin effect in the theory of synchrotron radiation,” Dokl. Akad. Nauk SSSR 153, 1052–1054 (1963).

    Google Scholar 

  9. D. Bukin et al., “Absolute calibration of beam energy in the storage ring. Phi-meson mass measurement,” in Proceedings of the 5th International Symposium on High Energy Physics and Elementary Particle Physics, Warsaw, 1975, pp. 138–162.

  10. Ya. S. Derbenev, A. M. Kondratenko, S. I. Serednyakov, A. N. Skrinsky, and G. M. Tumaikin, “Accurate calibration of the beam energy in a storage ring based on measurement of spin precession frequency of polarized particles,” Part. Accel. 10, 177—180 (1980).

    Google Scholar 

  11. V. E. Blinov, A. V. Bogomyagkov, N. Yu. Muchnoi, S. A. Nikitin, I. B. Nikolaev, A. G. Shamov, and V. N. Zhilich, “Review of beam energy measurements at VEPP-4M collider KEDR/VEPP-4M,” Nucl. Instrum. Methods Phys. Res., Sect. A 598, 23—30 (2009).

    Google Scholar 

  12. P. A. Zyla et al. (Particle Data Group), “2020 Review of Particle Physics,” Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  13. S. A. Nikitin, Preprint IYaF 2005—54 (Institute of Nuclear Physics, Novosibirsk, 2005).

    Google Scholar 

  14. O. V. Anchugov et al. “Use of the methods of accelerator physics in precision measurements of particle masses at the VEPP4 complex with the KEDR detector,” Instrum. Exp. Tech. 53, 15–28 (2010).

    Article  Google Scholar 

  15. V. M. Aulchenko et al. (KEDR Collab.), “New precision measurement of the J/\(\psi \) and \(\psi {\kern 1pt} '\) meson masses,” Phys. Lett. B 573, 63—79 (2003).

    Article  ADS  Google Scholar 

  16. E. Bondar et al., “Polarization measurement in storage rings of the Institute of Nuclear Physics (Novosibirsk),” in Proceedings of the 12th International Conference on High Energy Accelerators, Batavia, IL, USA, 1983, pp. 240–243.

  17. Bernardini et al., “Lifetime and beam size in a storage ring,” Phys. Rev. Lett. 10, 407—409 (1963).

    Article  ADS  Google Scholar 

  18. N. Skrinsky, P. V. Logachev, G. N. Kulipanov, et al., Colliders and Detectors at the Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences (Zolotoi Tirazh (Omskblankizdat), Omsk, 2019) [in Russian].

  19. V. N. Bayer, V. M. Katkov, and V. M. Strakhovenko, “On the influence of polarization on the effects of internal scattering of electrons in accelerators,” Dokl. Akad. Nauk SSSR 241, 797—800 (1978).

    Google Scholar 

  20. S. A. Nikitin and I. B. Nikolaev, Preprint IYaF 2010-42 (Institute of Nuclear Physics, Novosibirsk, 2010).

    Google Scholar 

  21. S. Nikitin and I. Nikolaev, “Dependence of the electron beam polarization effect in the intra-beam scattering rate on the vertical beam emittance,” in Proceedings of the 10th European Particle Accelerator Conference (EPAC 06), (Edinburgh, UK, 2006), pp. 1184–1186.

  22. N. I. Zinevich and E. I. Shubin, Preprint IYaF 84—11 (Institute of Nuclear Physics, Novosibirsk, 1984).

    Google Scholar 

  23. V. V. Anashin et al. (KEDR Collab.), “Final analysis of KEDR data on J/\(\psi \) and \(\psi \)(2S) masses,” Phys. Lett. B 749, 50—56 (2015).

    Article  ADS  Google Scholar 

  24. S. Artamonov et al., “A high precision measurement of the \(\Upsilon \), \(\Upsilon {\kern 1pt} '\) and \(\Upsilon {\kern 1pt} ''\),” Phys. Lett. B 137, 272 (1984).

    Article  ADS  Google Scholar 

  25. N. Yu. Muchnoi et al., “Fast and precise beam energy monitor based on the Compton backscattering at the VEPP-4M collider,” in Proceedings of the 10th European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 2006, pp. 1181–1183.

  26. R. Klein et al., “Beam diagnostics at the BESSY I electron storage ring with Compton backscattered laser photons: Measurement of the electron energy and related quantities,” Nucl. Instrum. Methods Phys. Res., Sect. A 384, 293—298 (1997).

    Google Scholar 

  27. R. Klein et al., “Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons,” Nucl. Instrum. Methods Phys. Res., Sect. A 486, 545—551 (2002).

    Google Scholar 

  28. V. V. Anashin et al. (KEDR Collab.), “Measurements of the \(\tau \) lepton mass at KEDR detector,” JETP Lett. 85, 347—352 (2007).

    Article  ADS  Google Scholar 

  29. V. V. Anashin et al., “Status of the KEDR detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 478, 420—425 (2002).

    Google Scholar 

  30. V. V. Anashin et al., “KEDR detector,” Phys. Part. Nucl. 44, 657–702 (2013).

    Article  Google Scholar 

  31. R. Brun et al., “GEANT 3.21, Detector description and simulation tool,” CERN Program Library Long Writeup W5013. CERN, Geneva (1993).

    Google Scholar 

  32. G. Shamov (KEDR Collab.), “Measurement of \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) leptonic width with the KEDR detector,” Proceedings of International Workshop on \({{e}^{ + }}{{e}^{ - }}\) Collision from \(\phi \) to \(\psi \), Beijing, 2009. Chinese Phys. C 84, 836—841 (2010); arXiv: hep-ex/1110.0328.

  33. N. Brambilla et al., Preprint CERN-2005-005 (CERN, Geneva, 2005); https://arxiv.org/abs/hep-ph/0412158v2.

  34. V. V. Anashin et al. (KEDR Collab.), “Measurement of main parameters of the \(\psi (2S)\) resonance,” Phys. Lett. B 711, 280—291 (2012). arXiv:1109.4215.

    Article  ADS  Google Scholar 

  35. E. A. Kuraev and V. S. Fadin, “On radiative corrections to the \({{e}^{ + }}{{e}^{ - }}\) single-photon annihilation at high energy,” Sov. J. Nucl. Phys. 41, 466-472 (1985).

    Google Scholar 

  36. J. P. Alexander et al., “Heavy flavor resonances and QED radiative corrections,” Nucl. Phys. B 320, 45 (1989).

    Article  ADS  Google Scholar 

  37. Ya. L. Azimov, A. I. Vainshtein, L. N. Lipatov, and V. A. Khoze, “Electromagnetic corrections to the cross section of the production of narrow resonances at colliding \({{e}^{ + }}{{e}^{ - }}\) beams,” Pis’ma Zh. Eksp. Teor. Fiz. 21, 378—382 (1975).

    Google Scholar 

  38. V. V. Anashin et al. (KEDR Collab.), “Measurement of \({{\Gamma }_{{ee}}}({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi })\) with KEDR detector,” J. High Energy Phys. 5, 119 (2018).

    Article  ADS  Google Scholar 

  39. V. V. Anashin et al. (KEDR Collab.), “Measurement of \({{\Gamma }_{{ee}}}*{{B}_{{\mu \mu }}}\) for \(\psi \)(2S) meson with KEDR detector,” Phys. Lett. B 781, 174—181 (2018).

    Article  ADS  Google Scholar 

  40. S. Jadach et al., “BHWIDE 1.00: 0(\(\alpha \)) YFS exponentiated Monte Carlo for Bhabha scattering at wide angles for LEP/SLC and LEP2,” Phys. Lett. B 390, 298—308 (1997).

    Article  ADS  Google Scholar 

  41. B. Arbuzov et al., “Monte-Carlo generator for \({{e}^{ + }}{{e}^{ - }}\) annihilation into lepton and hadron pairs with precise radiative corrections,” Eur. Phys. J. 46, 689 (2006).

    Article  ADS  Google Scholar 

  42. A. Zholents et al., “High precision measurement of the psi and psi-prime meson masses,” Phys. Lett. B 96, 214—216 (1980).

    Article  ADS  Google Scholar 

  43. T. A. Armstrong et al. (E760 Collab.), “Measurement of the J/psi and psi-prime resonance parameters in anti-p p annihilation,” Phys. Rev. D 47, 772—783 (1993).

    Article  ADS  Google Scholar 

  44. V. V. Anashin et al. (KEDR Collab.), “Measurement of \({{\Gamma }_{{ee}}}^{*}B({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi } \to {{e}^{ + }}{{e}^{ - }}\)) and \({{\Gamma }_{{ee}}}^{*}B({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi } \to {{\mu }^{ + }}{{\mu }^{ - }}\)),” Phys. Lett. B 685, 134—140 (2010).

    Article  ADS  Google Scholar 

  45. E. Barberio and Z. Was, “Photos: A universal Monte Carlo for QED radiative corrections. Version 2.0,” Comp. Phys. Comm. 79, 291 (1994).

    Article  ADS  Google Scholar 

  46. N. Nakamura et al., “The review of particle physics,” J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  47. V. M. Aulchenko et al. (KEDR Collab.), “Measurement of the ratio of the lepton widths \({{{{\Gamma }_{{ee}}}} \mathord{\left/ {\vphantom {{{{\Gamma }_{{ee}}}} {{{\Gamma }_{{\mu \mu }}}}}} \right. \kern-0em} {{{\Gamma }_{{\mu \mu }}}}}\) for the J/\(\psi \) meson,” Phys. Lett. B 731, 227—231 (2014).

    Article  ADS  Google Scholar 

  48. J. Beringer et al. (Particle Data Group), “The review of particle physics (2012),” Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  49. V. V. Anashin et al. (KEDR Collab.), “Addendum to: Measurement of \({{\Gamma }_{{ee}}}({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi })\) with KEDR detector,” J. High Energy Phys. 7, 112 (2020); arXiv ePrint: 1801.01958.

  50. V. V. Anashin et al. (KEDR Collab.), “Measurement of R between 1.84 and 3.05 GeV at the KEDR detector,” Phys. Lett. B 770, 174—182 (2017).

    Article  ADS  Google Scholar 

  51. J. C. Chen et al., “Event generator for \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) and \(\psi (2S)\) decay,” Phys. Rev. D 62, 034003 (2000).

    Article  ADS  Google Scholar 

  52. T. Sjostrand and M. Bengtsson, “The Lund Monte Carlo for jet fragmentation and \({{e}^{ + }}{{e}^{ - }}\) physics. Jetset version 6.3: An update,” Comput. Phys. Commun. 43, 367 (1987). T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” J. High Energy Phys. 0605, 026 (2006); arXiv:hep-ph/0603175.

  53. J. Z. Bai et al. (BES Collab.), “A measurement of \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) decay widths,” Phys. Lett. B 355, 374 (1995);

    Article  ADS  Google Scholar 

  54. Phys. Lett. B 363, 267 (1995) (erratum).

  55. N. Brambilla et al., “Heavy quarkonium: Progress, puzzles and opportunities,” https://arxiv.org/pdf/1010.5827.pdf; N. Brambilla, Yu. Jia, and A. Vairo, “Model-independent study of magnetic dipole transitions in quarkonium,” Phys. Rev. D 73, 054005 (2006); e-Print: hep-ph/0512369.

  56. V. V. Anashin et al. (KEDR Collab.), “Measurement of J/\(\psi \to \gamma {{\eta }_{c}}\) decay rate and \({{\eta }_{c}}\) parameters at KEDR,” Phys. Lett. B 738, 391—396 (2014).

    Article  ADS  Google Scholar 

  57. V. M. Aulchenko et al., “Liquid krypton calorimeter for KEDR detector and last prototype results,” Nucl. Instrum. Methods Phys. Res., Sect. A 379, 475—477 (1996).

    Google Scholar 

  58. M. A. Shifman, “ηc as we know it,” Z. Phys. C 4, 345 (1980). Z. Phys. C 6, 282 (1980) (erratum). Yu Khodjamirian, “On the calculation of \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi } \to {{\eta }_{c}}\gamma \) width in QCD,” Sov. J. Nucl. Phys. 39, 614 (1984). A. Beilin and A. V. Radyushkin, “Borelized sum rules for the radiative decays of charmonium in QCD,” Sov. J. Nucl. Phys. 45, 342 (1987); J. J. Dudek et al., “Radiative transitions in charmonium from lattice QCD,” Phys. Rev. D 73, 074507 (2006). G. C. Donald et al., “Precision tests of the \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) from full lattice QCD: Mass, leptonic width, and radiative decay rate to \({{\eta }_{c}}\),” Phys. Rev. D 86, 094501 (2012); D. Becirevic and F. Sanfilippo, “Lattice QCD study of the radiative decays \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi } \to {{\eta }_{c}}\gamma \) \({{h}_{c}} \to {{\eta }_{c}}\gamma \),” J. High Energy Phys. 1, 28 (2013); Pineda and J. Segovia, “Improved determination of heavy quarkonium magnetic dipole transitions in potential nonrelativistic QCD,” Phys. Rev. D 87, 074024 (2013).

    Article  Google Scholar 

  59. M. Carloni Calame et al., “The BABAYAGA event generator,” Nucl. Phys. B Proc. Suppl. 131, 48—55 (2004); http://www.sciencedirect.com/science/article/pii/S0920563204000106.

    Article  ADS  Google Scholar 

  60. Patrignani et al. (Particle Data Group), “The review of particle physics (2016),” Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  61. V. V. Anashin et al. (KEDR Collab.), “Measurement of \(\psi \)(3770) parameters,” Phys. Lett. B 711, 292—300 (2012).

    Article  ADS  Google Scholar 

  62. W. Bacino et al., “Observation of a peak in hadron and weak electron production in \({{e}^{ + }}{{e}^{ - }}\) annihilation at \({{E}_{{{\text{c}}{\text{.m}}{\text{.}}}}}\) = 3770 MeV,” Phys. Rev. Lett. 40, 671 (1978). G. S. Abrams et al., “Measurement of the parameters of the \(\psi {\kern 1pt} {''}{\kern 1pt} (3770)\) resonance,” Phys. Rev. D 21, 2716 (1980). M. Ablikim et al. (BES Collab.), “Precision measurements of the mass, the widths of \(\psi (3770)\) resonance and the cross section \(\sigma ({{e}^{ + }}{{e}^{ - }} \to \psi (3770))\) at E cm = 3.7724 GeV,” Phys. Lett. B 652, 238 (2007); M. Ablikim et al. (BES Collab.), “Determination of the \(\psi (3770)\), \(\psi (4040)\), \(\psi (4160)\) and \(\psi (4415)\) resonance parameters,” Phys. Lett. B 660, 315 (2008).

    Article  ADS  Google Scholar 

  63. P. A. Rapidis et al., “Observation of a resonance in \({{e}^{ + }}{{e}^{ - }}\) annihilation just above charm threshold,” Phys. Rev. Lett. 39, 526 (1977). Phys. Rev. Lett. 39, 974 (1977) (erratum).

    Article  ADS  Google Scholar 

  64. Aubert et al. (BaBar Collab.), “Study of resonances in exclusive B decays to\(/barD{\text{*}}D{\text{*}}K\),” Phys. Rev. D 77, 011102(R) (2008); J. Brodzicka et al. (Belle Collab.), “Observation of a new \({{D}_{{sJ}}}\) meson in \({{B}^{ + }} \to {{\bar {D}}^{0}}{{D}^{0}}{{K}^{ + }}\) decays,” Phys. Rev. Lett. 100, 092001 (2008).

    Article  Google Scholar 

  65. Aubert et al., “Study of the exclusive initial-state radiation production of the \(D\bar {D}\) system,” Phys. Rev. D 76, 111105(R) (2007).

  66. K. Yu. Todyshev (KEDR Collab.), “Measurement of psi(3770) parameters with KEDR detector at VEPP-4M,” in Proceedings of the 35th International Conference on High Energy Physics (ICHEP 2010), Ed. by B. Pire, M. Cirelli, P. Colas, A. Djouadi, A. Lounis, F. Machefert, and G. Wormser (Proc. Sci., 2010), p. 218.

  67. Sommerfeld, Atombau und Spektrallinien (Vieweg, Braunschweig, 1939), Vol. 2; A. D. Sakharov, “Interaction of an electron and positron in pair production,” Sov. Phys. JETP 18, 631—635 (1948).

  68. J. Julin, PhD Thesis (Univ. of Minnesota, 2017).

  69. I. Milstein and S. G. Salnikov, “Coulomb effects in the decays \(\Upsilon (4S) \to B\bar {B}\),” Phys. Rev. D 104, 014007 (2021).

    Article  ADS  Google Scholar 

  70. D. Bukin, “On the ambiguity of the interfering resonances parameters determination,” arXiv:0710.5627 [physics.data-an].

  71. G. Shamov and K. Yu. Todyshev, “Analysis of BaBar, Belle, BES-II, CLEO and KEDR data on \(\psi \)(3770) line shape and determination of the resonance parameters,” Phys. Lett. B 769, 187—190 (2017).

    Article  ADS  Google Scholar 

  72. Besson et al. (CLEO Collab.), “Measurement of \(\sigma ({{e}^{ + }}{{e}^{ - }} \to \psi (3770) \to {\text{hadrons}})\) at \({{E}_{{{\text{c}}{\text{.m}}{\text{.}}}}}\) = 3773 MeV,” Phys. Rev. Lett. 96, 092002 (2006), Phys. Rev. Lett. 104, 159901 (2010) (erratum).

    Article  ADS  Google Scholar 

  73. M. Ablikim et al. (BES Collab.), “Direct measurements of the cross sections for \({{e}^{ + }}{{e}^{ - }} \to {\text{hadrons}}\)|non-DD\bar in the range from 3.65 GeV to 3.87 GeV and the branching fraction for \(\psi (3770) \to {\text{non - }}D\bar {D}\),” Phys. Lett. B 659, 74 (2008).

    Article  ADS  Google Scholar 

  74. N. N. Achasov and G. N. Shestakov, “Line shape of \(\psi (3770)in{{e}^{ + }}{{e}^{ - }} \to D\bar {D}\),” Phys. Rev. D 86, 114013 (2012).

    Article  ADS  Google Scholar 

  75. Guo-Ying Chen and Qiang Zhao, “Study of the anomalous cross section lineshape of \({{e}^{ + }}{{e}^{ - }} \to D\bar {D}\) at \(\psi (3770)\) with an effective field theory,” Phys. Lett. B 718, 1369 (2013).

    Article  ADS  Google Scholar 

  76. X. Cao and H. Lenske, “Charmonium resonances and Fano line shapes,” arXiv:1408.5600 [nucl-th].

  77. D. Toth, PhD Thesis (Univ. of Minnesota, 2014).

  78. R. Aaij et al. (LHCb Collab.), “Near-threshold \(D\bar {D}\) spectroscopy and observation of a new charmonium state,” J. High Energy Phys. 07, 035 (2019).

  79. M. Ablikim et al. (BES Collab.), “Precision measurements of the mass, the widths of \(\psi \)(3770) resonance and the cross section \(\sigma ({{e}^{ + }}{{e}^{ \to }}\psi \)(3770) at E cm = 3.7724-GeV,” Phys. Lett. B 652, 238 (2007).

    Article  ADS  Google Scholar 

  80. V. V. Anashin et al. (KEDR Collab.), “Measurement of \({{D}^{0}}\) and \({{D}^{ + }}\) meson masses with the KEDR detector,” Phys. Lett. B 686, 84—90 (2010).

    Article  ADS  Google Scholar 

  81. S. Dobbs et al. (CLEO Collab.), “Measurement of absolute hadronic branching fractions of D mesons and \({{e}^{ + }}{{e}^{ - }} \to D\bar {D}\) cross sections at the \(\psi (3770)\),” Phys. Rev. D 76, 112001 (2007).

    Article  ADS  Google Scholar 

  82. Cawlfield et al. (CLEO Collab.), “A precision determination of the D 0 mass,” Phys. Rev. Lett. 98, 092002 (2007).

    Article  ADS  Google Scholar 

  83. J. Z. Bai et al. (BES Collab.), “Measurement of the mass of the \(\tau \) lepton,” Phys. Rev. D 53, 20 (1996).

    Article  ADS  Google Scholar 

  84. G. Shamov (KEDR Collab.), “The threshold experiments: Status and expectations,” Nucl. Phys. B (Proc. Suppl.) 144, 113 (2005).

    Article  Google Scholar 

  85. M. B. Voloshin, “The onset of \({{e}^{ + }}{{e}^{ - }} \to {{\tau }^{ + }}{{\tau }^{ - }}\) at threshold revisited,” Phys. Lett. B 556, 153—162 (2003).

    Article  ADS  Google Scholar 

  86. S. Jadach and Z. Was, “KORALB—an upgrade to version 2.4,” Comput. Phys. Commun. 85, 453–462 (1995).

    Article  ADS  Google Scholar 

  87. W.-M. Yao et al. (Particle Data Group), “The review of particle physics (2006),” J. Phys. G 33, 1 (2006).

    ADS  Google Scholar 

  88. K. Abe et al. (Belle Collab.), “Measurement of the mass of the tau-lepton and an upper limit on the mass difference between \({{\tau }^{ + }}\) and \({{\tau }^{ - }}\),” Phys. Rev. Lett. 99, 011801 (2007).

    Article  ADS  Google Scholar 

  89. M. Ablikim et al. (BESIII Collab.), “Precision measurement of the mass of the \(\tau \) lepton,” Phys. Rev. D 90, 012001 (2014).

    Article  ADS  Google Scholar 

  90. V. Abakumova et al., “The beam energy measurement system for the Beijing electron-positron collider,” Nucl. Instrum. Methods Phys. Res., Sect. A 659, 21—29 (2011).

    Google Scholar 

  91. M. N. Achasov et al., “A scenario for high accuracy τ mass measurement at BEPC-II,” Chin. Phys. C 36, 573—577 (2012).

    Article  ADS  Google Scholar 

  92. V. V. Anashin et al. (KEDR Collab.), “Precise measurement of R uds and R between 1.84 and 3.72 GeV at the KEDR detector,” Phys. Lett. B 788, 42—51 (2019).

    Article  ADS  Google Scholar 

  93. E. Blinov et al. (MD-1 Collab.), “The search for narrow resonances in the reaction \({{e}^{ + }}{{e}^{ - }} \to {\text{hadrons}}\) at center-of-mass energy range between 7.23 GeV and 10.34 GeV,” Z. Phys. C 49, 239—243 (1991).

    Article  Google Scholar 

  94. E. Blinov et al. (MD-1 Collab.), “The measurement of R in e+ e- annihilation at center-of-mass energies between 7.2 GeV and 10.34 GeV,” Z. Phys. C 70, 31—38 (1996).

    Article  ADS  Google Scholar 

  95. B. Esposito et al., “Search for narrow resonances in \({{e}^{ + }}{{e}^{ - }}\) annihilation into hadrons at ADONE,” Phys. Lett. B 58, 478—480 (1975). C. Bacci et al., “Search for narrow resonances in \({{e}^{ + }}{{e}^{ - }}\) annihilation into hadrons in the mass regions 1910 MeV—2545 MeV and 2970 MeV–3090 MeV,” Phys. Lett. B 58, 481—483 (1975); C. Bacci et al., “Experimental results on a search for narrow resonances in \({{e}^{ + }}{{e}^{ - }}\) annihilation into hadrons in the mass region 2520 MeV–2990 MeV,” Phys. Lett. B 64, 356—358 (1976). M. Ambrosio et al., “Search for \(J/\psi \) like resonance below 3 GeV in \({{e}^{ + }}{{e}^{ - }}\) annihilation,” Phys. Lett. B 64, 359—361 (1976). B. Esposito et al., “Search for narrow resonances in \({{e}^{ + }}{{e}^{ - }}\) annihilation into hadrons at ADONE in the mass region 2.5–3.0 GeV/c 2,” Phys. Lett. B 64, 362—364 (1976). R. Baldini-Celio et al., “Search for narrow resonances in the mass region 1.45 GeV–1.92 GeV in \({{e}^{ + }}{{e}^{ - }}\) annihilation into hadrons,” Phys. Lett. B 78, 167 (1978). M. Ambrosio et al., “A search for narrow resonances produced by \({{e}^{ + }}{{e}^{ - }}\) annihilation in the mass region from 1.4 to 1.75 GeV/c 2,” Phys. Lett. B 80, 141—144 (1978).

  96. V. V. Anashin et al. (KEDR Collab.), “Search for narrow resonances in annihilation between 1.85 and 3.1 GeV with the KEDR detector,” Phys. Lett. B 703, 543—546 (2011).

    Article  ADS  Google Scholar 

  97. J. D. Jackson and D. L. Scharre, “Initial state radiative and resolution corrections and resonance parameters in \({{e}^{ + }}{{e}^{ - }}\) annihilation,” Nucl. Instr. Meth. 128, 13 (1975).

    Article  Google Scholar 

  98. J. Z. Bai et al. (BES Collab.), “Measurements of the cross section for \({{e}^{ + }}{{e}^{ - }} \to {\text{hadrons}}\) at center-of-mass energies from 2 to 5 GeV,” Phys. Rev. Lett. 88, 101802 (2002).

    Article  ADS  Google Scholar 

  99. P. A. Baikov et al., “Adler function, sum rules and Crewther relation of order \(\mathcal{O}(\alpha _{s}^{4})\): The singlet case,” Phys. Lett. B 714, 62—65 (2012).

    Article  ADS  Google Scholar 

  100. M. Davier et al., “Reevaluation of the hadronic contributions to the muon g–2 and to \(\alpha (M_{Z}^{2})\),” Eur. Phys. J. C 71, 1515 (2011).

    Article  ADS  Google Scholar 

  101. K. Hagiwara et al., “\({{(g - 2)}_{\mu }}\) and \(\alpha (M_{Z}^{2})\) re-evaluated using new precise data,” J. Phys. G 38, 085003 (2011).

    Article  ADS  Google Scholar 

  102. N. Brambilla et al., “Heavy quarkonium: Progress, puzzles, and opportunities,” Eur. Phys. J. C 71, 1534 (2011).

    Article  ADS  Google Scholar 

  103. M. Ablikim et al. (BES Collab.), “R value measurements for \({{e}^{ + }}{{e}^{ - }}\) annihilation at 2.60 GeV, 3.07 GeV and 3.65 GeV,” Phys. Lett. B 677, 239—245 (2009).

    Article  ADS  Google Scholar 

  104. J. Z. Bai et al. (BES Collab.), “Measurements of the cross-section for \({{e}^{ + }}{{e}^{ - }} \to {\text{hadrons}}\) at center-of-mass energies from 2 GeV to 5 GeV,” Phys. Rev. Lett. 88, 101802 (2002).

    Article  ADS  Google Scholar 

  105. M. Ablikim et al., “Measurements of the continuum R(uds) and R values in \({{e}^{ + }}{{e}^{ - }}\) annihilation in the energy region between 3.650 and 3.872-GeV,” Phys. Rev. Lett. 97, 262001 (2006).

    Article  ADS  Google Scholar 

  106. V. V. Anashin et al. (KEDR Collab.), “Measurement of \({{R}_{{{\text{uds}}}}}\) and \(R\) between 3.12 and 3.72 GeV at the KEDR detector,” Phys. Lett. B 753, 533—541 (2016).

    Article  ADS  Google Scholar 

  107. S. Actis et al., “Quest for precision in hadronic cross section at low energy Monte Carlo tools vs. experimental data,” Eur. Phys. J. C 66, 585 (2010).

    Article  ADS  Google Scholar 

  108. C. Fox and S. Wolfram, “Event shapes in \({{e}^{ + }}{{e}^{ - }}\) annihilation,” Nucl. Phys. B 149, 413 (1979), Nucl. Phys. B 157, 543 (1979) (erratum).

    Google Scholar 

  109. A. Berends et al., “Monte Carlo simulation of two photon processes. 2. Complete lowest order calculations for four lepton production processes in electron positron collisions,” Comput. Phys. Commun. 40, 285 (1986).

    Article  ADS  Google Scholar 

  110. A. Berends et al., “Monte Carlo simulation of two photon processes. 1. Radiative corrections to multiperipheral \({{e}^{ + }}{{e}^{ - }} \to {{\mu }^{ + }}{{\mu }^{ - }}\) production,” Comput. Phys. Commun. 40, 271—284 (1986).

    Article  ADS  Google Scholar 

  111. V. A. Tayursky and S. I. Eidelman, Preprint IYaF 2000-78 (Institute of Nuclear Physics, Novosibirsk, 2000).

    Google Scholar 

  112. V. A. Tayursky, “Development of two-photon event generators for the KEDR experiment,” J. Phys.: Conf. Ser. 798, 012153 (2017). http://stacks.iop.org/1742-6596/798/i=1/a=012153.

    Google Scholar 

  113. Haiming Hu and An Tai, “Production at intermediate energies and Lund area law,” arXiv:hep-ex/0106017, 2001.

  114. J. Siegrist et al., “Hadron production by \({{e}^{ + }}{{e}^{ - }}\) annihilation at center-of-mass energies between 2.6 GeV and 7.8 GeV. Part 1. Total cross-section, multiplicities and inclusive momentum distributions,” Phys. Rev. D 26, 969 (1982).

    Article  ADS  Google Scholar 

  115. Czyz et al., in Mini-Proceedings of the 14th Meeting of the Working Group on Radiative Corrections and MC Generators for Low Energies, arXiv:1312.0454.

  116. Czyz et al., in Mini-Proceedings of the 15th Meeting of the Working Group on Radiative Corrections and MC Generators for Low Energies, arXiv:1406.4639.

  117. K. Yu. Todyshev, “Measuring the inclusive cross section of e + e annihilation into hadrons in the pre-asymptotic energy range,” Phys. Usp. 63, 929–939 (2020).

    Article  ADS  Google Scholar 

  118. S.E. Baru et al., “Trigger of the KEDR detector,” Instruments and experimental techniques C/C of Pribory i tekhnika experimenta, 54, 335–349(2011).

  119. M. Ablikim et al. (BESIII collab.), “Measurement of the Leptonic Decay Width of J/psi Using Initial State Radiation,” Phys. Lett. B 761, 98 (2016)).

  120. M. Ablikim et al. (BESIII collab.), “Measurement of the e + e → DD-bar cross section at the psi(3770) resonance,” Chin. Phys. C 42, 083001(2018).

Download references

ACKNOWLEDGMENTS

We thank the employees of the acceleration complex VEPP-4M, experimental laboratories, other BINP divisions, who made possible unique experiments with the KEDR detector which resulted in important results in elementary particle physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tayursky.

Additional information

Translated by E. Baldina

APPENDIX

APPENDIX

1.1 LIST OF MAIN RESULTS OF EXPERIMENTS WITH THE KEDR DETECTOR AT THE VEPP-4M COLLIDER

1. \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) meson parameters

1*

Mass = \(3096.900 \pm 0.002 \pm 0.006\) MeV

[23]

2

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{\mu \mu }}}\) = \(331.8 \pm 5.2 \pm 6.3\) eV

[44]

3*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{ee}}}\) = \(333.1 \pm 6.6 \pm 4.0\) eV

[38]

4*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{\text{h}}}}\) = \(4.884 \pm 0.048 \pm 0.078\) keV

[38]

5*

\({{\Gamma }_{{ee}}}\) = \(5.550 \pm 0.056 \pm 0.089\) keV

[38]

6*

\(\Gamma \) = \(92.45 \pm 1.40 \pm 1.48\) keV

[49]

7*

\({{\Gamma }_{{\text{h}}}}\) = \(81.37 \pm 1.36 \pm 1.30\) keV

[49]

8

\(\Gamma _{{\gamma {{\eta }_{c}}}}^{0}\) = \(2.98 \pm 0.18_{{ - 0.33}}^{{ + 0.15}}\) keV

[55]

9*

\({{{{\Gamma }_{{ee}}}} \mathord{\left/ {\vphantom {{{{\Gamma }_{{ee}}}} {{{\Gamma }_{{\mu \mu }}}}}} \right. \kern-0em} {{{\Gamma }_{{\mu \mu }}}}}\) = \(1.0022 \pm 0.0044 \pm 0.0048\)

[47]

2. \({{\eta }_{c}}\) meson parameters

1

Mass = \(2983.5 \pm 1.4_{{ - 3.6}}^{{ + 1.6}}\) MeV

[55]

2

\(\Gamma \) = \(27.2 \pm 3.1_{{ - 2.6}}^{{ + 5.4}}\) MeV

[55]

3. \(\psi (2S)\) meson parameters

1*

Mass = \(3686.099 \pm 0.004 \pm 0.009\) MeV

[23]

2

\({{\Gamma }_{{ee}}}\) = \(2.282 \pm 0.015 \pm 0.042\) keV

[39]

3

\(\Gamma \) = \(296 \pm 2 \pm 8 \pm 3\) keV

[34]

4*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{\text{h}}}}\) = \(2.233 \pm 0.015 \pm 0.037 \pm 0.020\) keV

[34]

5*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{ee}}}\) = \(21.2 \pm 0.7 \pm 1.2\) eV

[39]

6*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{\mu \mu }}}\) = \(19.3 \pm 0.3 \pm 0.5\) eV

[39]

7*

\({{\Gamma }_{{ee}}} \times {{\mathcal{B}}_{{\tau \tau }}}\) = \(9.0 \pm 2.6\) eV

[28]

4. \(\psi (3770)\) meson parameters from joint analysis of data from five experiments

1

Mass = \(3779.8 \pm 0.6\) MeV

[70]

2

\({{\Gamma }_{{ee}}}\) = \(196 \pm 18\) eV

[70]

3

\(\Gamma \) = \(25.8 \pm 1.3\) MeV

[70]

5. τ lepton mass

1

   \({{M}_{\tau }}\) = \(1776.69_{{ - 0.19}}^{{ + 0.17}} \pm 0.15\) MeV

[5]

6. D meson masses

1*

\({{M}_{{{{D}^{ \pm }}}}}\) = \(1869.53 \pm 0.49 \pm 0.20\) MeV

[79]

2

\({{M}_{{{{D}^{0}}}}}\) = \(1865.30 \pm 0.33 \pm 0.23\) MeV

[79]

7. Search of narrow resonances in the range \(\sqrt s \) = 1.85–3.1 GeV

1*

\(\Gamma _{{ee}}^{R} \times {{\mathcal{B}}_{{\text{h}}}} < \) 120 eV, with 90% confidence level

[95]

8. R measurement in the region of \(\sqrt s \) between 1.84 and 3.72 GeV

1*

\(\sqrt s = 1.84{\kern 1pt} - {\kern 1pt} 3.05\) GeV:

\(\left\langle R \right\rangle \) = \(2.225 \pm 0.020 \pm 0.047\)

[91]

2*

\(\sqrt s = 3.08{\kern 1pt} - {\kern 1pt} 3.72\) GeV:

\(\left\langle {{{R}_{{{\text{uds}}}}}} \right\rangle \) =\(2.204 \pm 0.014 \pm 0.026\)

[91]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anashin, V.V., Anchugov, O.V., Aulchenko, V.M. et al. Experiments with the KEDR Detector at the \({{e}^{ + }}{{e}^{ - }}\) Collider VEPP-4M in the Energy Range \(\sqrt s \) = 1.84–3.88 GeV. Phys. Part. Nuclei 54, 185–226 (2023). https://doi.org/10.1134/S1063779623010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623010033

Navigation