Skip to main content
Log in

Final model independent results of DAMA/LIBRA-phase1 and perspectives of phase2

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This paper shortly summarizes the results obtained with the total exposure of 1.04 ton × yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles. The DAMA/LIBRA-phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles) give evidence at 9.3 σ C.L. for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target. The modulation amplitude of the single-hit events in the (2–6) keV energy interval is: (0.0112 ± 0.0012) cpd/kg/keV; the measured phase is (144 ± 7) days and the measured period is (0.998 ± 0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. Some of the perspectives of the presently running DAMA/LIBRA-phase2 are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bernabei et al. (DAMA Collab.), “The DAMA/LIBRA apparatus,” Nucl. Instr. Meth., A 592, 297 (2008).

    Article  ADS  Google Scholar 

  2. R. Bernabei et al. (DAMA Collab.), “First results from DAMA/LIBRA and the combined results with DAMA/NaI,” Eur. Phys. J., C 56, 333 (2008).

    Article  ADS  Google Scholar 

  3. R. Bernabei et al. (DAMA Collab.), “New results from DAMA/LIBRA,” Eur. Phys. J., C 67, 39 (2010).

    Article  ADS  Google Scholar 

  4. R. Bernabei et al. (DAMA Collab.), “Final model independent result of DAMA/LIBRA-phase1,” Eur. Phys. J., C 73, 2648 (2013).

    Article  ADS  Google Scholar 

  5. P. Belli et al., “Observations of annual modulation in direct detection of relic particles and light neutralinos,” Phys. Rev., D 84, 055014 (2011).

    Article  ADS  Google Scholar 

  6. R. Bernabei et al. (DAMA Collab.), “Performances of the new high quantum efficiency PMTs in DAMA/LIBRA,” J. Instrum. 7, P03009 (2012).

    Article  Google Scholar 

  7. R. Bernabei et al. (DAMA Collab.), “No role for muons in the DAMA annual modulation results,” Eur. Phys. J., C 72, 2064 (2012).

    Article  ADS  Google Scholar 

  8. R. Bernabei et al. (DAMA Collab.), “Dark matter investigation by DAMA at Gran Sasso,” Int. J. Mod. Phys., A 28, 1330022 (2013).

    Article  ADS  Google Scholar 

  9. R. Bernabei et al. (DAMA Collab.), “New search for processes violating the Pauli exclusion principle in sodium and in iodine,” Eur. Phys. J., C 62, 327 (2009).

    Article  ADS  Google Scholar 

  10. R. Bernabei et al. (DAMA Collab.), “Search for charge non-conserving processes in I-(127) by coincidence technique,” Eur. Phys. J., C 72, 1920 (2012).

    Article  ADS  Google Scholar 

  11. R. Bernabei et al. (DAMA Collab.), “New search for correlated e + e-pairs in the alpha decay of 241 Am,” Eur. Phys. J., A 49, 64 (2013).

    Article  ADS  Google Scholar 

  12. R. Bernabei et al. (DAMA Collab.), “Model independent result on possible Diurnal effect in DAMA/LIBRA-phase1,” Eur. Phys. J., C 74, 2827 (2014).

    Article  ADS  Google Scholar 

  13. R. Bernabei et al. (DAMA Collab.), Phys. Lett., B 389, 757 (1996); 424, 195 (1998); 450, 448 (1999); 480, 23 (2000); 509, 197(2001); Eur. Phys. J., C 23, 61 (2002); P. Belli et al., Phys. Rev., D 61, 023512 (2000); 66, 043503 (2002).

    Article  ADS  Google Scholar 

  14. R. Bernabei et al. (DAMA Collab.), II Nuovo Cim., A 112, 545 (1999).

    Article  ADS  Google Scholar 

  15. R. Bernabei et al. (DAMA Collab.), “On the investigation of possible systematics in WIMP annual modulation search,” Eur. Phys. J., C 18, 283 (2000).

    Article  ADS  Google Scholar 

  16. R. Bernabei el al. (DAMA Collab.), La Rivista del Nuovo Cimento 26(1), 1 (2003).

    ADS  Google Scholar 

  17. R. Bernabei et al. (DAMA Collab.), “Dark matter particles in the Galactic Halo: results and implications from DAMA/NaI,” Int. J. Mod. Phys., D 13, 2127 (2004).

    Article  ADS  MATH  Google Scholar 

  18. R. Bernabei et al. (DAMA Collab.), “Investigating pseudoscalar and scalar dark matter,” Int. J. Mod. Phys., A 21, 1445 (2006).

    Article  ADS  MATH  Google Scholar 

  19. R. Bernabei et al. (DAMA Collab.), “Investigating Halo substructures with annual modulation signature,” Eur. Phys. J., C 47, 263 (2006).

    Article  ADS  Google Scholar 

  20. R. Bernabei et al. (DAMA Collab.), “On electromagnetic contributions in WIMP quests,” Int. J. Mod. Phys., A 22, 3155 (2007).

    Article  ADS  Google Scholar 

  21. R. Bernabei et al. (DAMA Collab.), “Possible implications of the channeling effect in NaI(Tl) crystals,” Eur. Phys. J., C 53, 205 (2008).

    Article  ADS  Google Scholar 

  22. R. Bernabei et al. (DAMA Collab.), “Investigating electron interacting dark matter,” Phys. Rev., D 77, 023506 (2008).

    Article  ADS  Google Scholar 

  23. R. Bernabei et al. (DAMA Collab.), “Investigation on light dark matter,” Mod. Phys. Lett., A 23, 2125 (2008).

    Article  ADS  Google Scholar 

  24. R. Bernabei et al. (DAMA Collab.), Phys. Lett., B 408, 439 (1997); 515, 6 (2001); Phys. Rev. Lett. 83, 4918 (1999); II Nuovo Cimento, A 112, 1541 (1999); Eur. Phys. J., A 23, 7 (2005); 24, 51 (2005); Astrop. Phys. 4, 45 (1995). P. Belli et al. (DAMA Collab.), Phys. Lett., B 460, 236 (1999); Phys. Rev., C 60, 065501 (1999); F. Cappella et al. (DAMA Collab.), Eur. Phys. J., C 14, 1 (2002)

    Article  ADS  Google Scholar 

  25. R. Bernabei, The Identification of Dark Matter (World Sc. Pub., 1997), p. 574.

    Google Scholar 

  26. A. K. Drukier, K. Freese, and D. N. Spergel, “Detecting cold dark-matter candidates,” Phys. Rev., D 33, 3495 (1986); K. Freese, J. Freeman, and A. Gould, “Signal modulation in cold-dark-matter detectionm” Phys. Rev., D 37, 3388 (1988).

    Article  ADS  Google Scholar 

  27. D. Smith and N. Weiner, “Inelastic dark matter,” Phys. Rev., D 64, 043502 (2001); D. Tucker-Smith and N. Weiner, “Status of inelastic dark matter,” Phys. Rev., D 72, 063509 (2005); D. P. Finkbeiner, T. Lin, and N. Weiner, “Inelastic dark matter and DAMA/LIBRA: an experimentum crucis,” Phys. Rev., D 80, 115008 (2009).

    Article  ADS  Google Scholar 

  28. K. Freese, P. Gondolo, and H. J. Newberg, “Detectability of weakly interacting massive particles in the sagittarius dwarf tidal stream,” Phys. Rev., D 71, 043516 (2005); K. Freese, P. Gondolo, H. J. Newberg, and M. Lewis, “Effects of the sagittarius dwarf tidal stream on dark matter detectors,” Phys. Rev. Lett. 92, 11301 (2004).

    Article  ADS  Google Scholar 

  29. K. Freese, P. Gondolo, and H. J. Newberg, “Detectability of weakly interacting massive particles in the sagittarius dwarf tidal stream,” Phys. Rev., D 71, 043516 (2005); New Astr. Rev. 49, 193 (2005); arXiv:astro-ph/0310334, arXiv:astro-ph/0309279.

    Article  ADS  Google Scholar 

  30. G. Gelmini and P. Gondolo, “Weakly interacting massive particle annual modulation with opposite phase in late-infall Halo models,” Phys. Rev., D 64, 023504 (2001).

    Article  ADS  Google Scholar 

  31. F. S. Ling, P. Sikivie, and S. Wick, “Diurnal and annual modulation of cold dark matter signals,” Phys. Rev., D 70, 123503 (2004).

    Article  ADS  Google Scholar 

  32. J. Beringer et al. (Particle Data Group), “Review of particle properties,” Phys. Rev., D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  33. R. Bernabei et al. (DAMA Collab.), “Particle dark matter and DAMA/LIBRA,” AIP Conf. Proc. 1223, 50 (2010), arXiv:0912.0660.

    Article  ADS  Google Scholar 

  34. R. Bernabei et al. (DAMA Collab.), “Technical aspects and dark matter searches,” J. Phys., Conf. 203, 012040 (2010), arXiv:0912.4200; F. Nozzoli, http://taup2009.lngs.infn.it/slides/jul3/nozzoli.pdf.

    Article  ADS  Google Scholar 

  35. R. Bernabei et al. (DAMA Collab.), “Particle dark matter in DAMA/LIBRA,” Frontier objects in astrophysics and particle physics, (Vulcano 2010), S.I.F. Ed., 157 (2010), arXiv:1007.0595.

    Google Scholar 

  36. R. Bernabei et al. (DAMA Collab.), “Particle dark matter in the Galactic Halo: recent results from DAMA/LIBRA,” Can. J. Phys. 89, 141 (2011).

    Article  ADS  Google Scholar 

  37. R. Bernabei et al. (DAMA Collab.), “DAMA/LIBRA at Gran Sasso,” Physics Procedia 37, 1095 (2012).

    Article  ADS  Google Scholar 

  38. R. Bernabei et al. (DAMA Collab.), Comment on “On an Unverified Nuclear Decay and its Role in the DAMA Experiment,” arXiv:1210.5501, arXiv:1210.6199.

  39. R. Bernabei et al. (DAMA Collab.), A few final comments to arXiv:1210.7548[hep-ph], arXiv:1211.6346.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Belli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernabei, R., Belli, P., Cappella, F. et al. Final model independent results of DAMA/LIBRA-phase1 and perspectives of phase2. Phys. Part. Nuclei 46, 138–146 (2015). https://doi.org/10.1134/S1063779615020045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615020045

Keywords

Navigation