Skip to main content
Log in

On the Fractional Version of Cosmic Ray Acceleration Nonlocality

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The commonly accepted CR transport theory is based on the diffusion equation, which in turn follows from the Boltzmann kinetic equation. The latter was derived for multiple collisions of particles with local formations under the assumption of their statistical independence, more precisely, of the Poisson nature of the ISM ensemble. This property is responsible for the appearance of local operators in diffusion-type equations. However, the interstellar cloud structure, coupled with its turbulent nature, is an example of a strongly correlated medium where CR transport does not obey the ordinary diffusion theory. To describe it, the authors use the generalized (non-local) transport equation for describing the distributed acceleration of CRs as multiple scattering in the momentum phase space, taking into account the long-range correlations of magnetic field in ISM. The latter is realized by means of solving fractional order integro-differential equation for momentum distribution by Monte Carlo method. Numerical calculations have confirmed analytical results obtained earlier and demonstrate steepening of the energy spectrum due to the increease in medium correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. E. G. Berezhko and G. F. Krymskii, Sov. Phys. Usp. 31, 27 (1988).

    Article  ADS  Google Scholar 

  2. F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).

    Article  ADS  Google Scholar 

  3. V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, and V. S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990).

    Google Scholar 

  4. V. S. Ptuskin, Nuovo Cim. C 19, 755 (1996).

    Article  ADS  Google Scholar 

  5. W. I. Axford, AIP Conf. Proc. 264, 45 (1992).

    Article  ADS  CAS  Google Scholar 

  6. R. D. Blandford and J. P. Ostriker, Astrophys. J. 237, 793 (1980).

    Article  ADS  CAS  Google Scholar 

  7. E. G. Berezhko and G. F. Krymsky, in Proceedings of the 18th International Cosmic Ray Conference (1983), Vol. 2, p. 255.

  8. A. M. Bykov and I. N. Toptygin, Izv. Akad. Nauk SSSR 52, 2290 (1988).

    CAS  Google Scholar 

  9. A. M. Bykov and I. N. Toptygin, in Proceedings of the 25th International Cosmic Rays Conference ICRC, Durban (1997), Vol. 4, p. 365.

  10. A. M. Bykov and G. D. Fleishman, Sov. Astron. Lett. 18, 95 (1992).

    ADS  Google Scholar 

  11. M. Simon, W. Heinrich, and K. D. Mathis, Astrophys. J. 300, 32 (1986).

    Article  ADS  CAS  Google Scholar 

  12. V. S. Ptuskin, Adv. Space Res. 19, 697 (1997).

    Article  ADS  CAS  Google Scholar 

  13. A. Wandel, D. S. Eichler, J. R. Letaw, R. Silberberg, and C. H. Tsao, Astrophys. J. 316, 676 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. J. R. Letaw, R. Silberberg, and C. H. Tsao, Astrophys. J. 414, 601 (1993).

    Article  ADS  CAS  Google Scholar 

  15. E. S. Seo and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).

    Article  ADS  CAS  Google Scholar 

  16. M. Cardillo, Galaxies 7 (2), 49 (2019).

    Article  ADS  Google Scholar 

  17. L. O’C. Drury and A. W. Strong, Astron. Astrophys. 597, A117 (2017).

    Article  Google Scholar 

  18. K. S. Cheng, D. O. Chernyshov, V. A. Dogiel, and C. M. Ko, Astrophys. J. 804, 135 (2015).

    Article  ADS  Google Scholar 

  19. D. Eichler, Astrophys. J. 237, 809 (1980).

    Article  ADS  CAS  Google Scholar 

  20. R. Cowsik, Astron. Astrophys. 155, 344 (1986).

    ADS  CAS  Google Scholar 

  21. C. Bustard and S. P. Oh, Astrophys. J. 941, 65 (2022).

    Article  ADS  Google Scholar 

  22. V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, Berlin, 2013).

    Book  Google Scholar 

  23. V. V. Uchaikin and I. I. Kozhemyakin, Universe 8, 249 (2022).

    Article  ADS  CAS  Google Scholar 

  24. V. V. Uchaikin, A. D. Erlykin, and R. T. Sibatov, Phys. Usp. 66, 221 (2023).

    Article  ADS  Google Scholar 

  25. V. V. Uchaikin, JETP Lett. 92, 200 (2010).

    Article  ADS  CAS  Google Scholar 

  26. V. V. Uchaikin and V. V. Saenko, Sib. Zh. Vychisl. Mat. 6, 197 (2003).

    Google Scholar 

  27. A. V. Kulakov and A. A. Rumyantsev, Phys. Dokl. 39, 337 (1994).

    ADS  Google Scholar 

  28. V. V. Uchaikin, D. O. Cahoy, and R. T. Sibatov, Int. J. Bifurc. Chaos 18, 2717 (2008).

    Article  Google Scholar 

  29. J. L. Osborn and V. S. Ptuskin, Sov. Astron. Lett. 13, 413 (1987).

    ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Uchaikin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchaikin, V.V., Sibatov, R.T. & Kozhemyakin, I.I. On the Fractional Version of Cosmic Ray Acceleration Nonlocality. Phys. Atom. Nuclei 86, 1235–1240 (2023). https://doi.org/10.1134/S1063778824010587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010587

Navigation