Skip to main content
Log in

The Fundamental Scale of QCD

  • Elementary Particles and Fields/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

There are several scales in the QCD as the theory of strong interaction: the vacuum gluonic condensate (as the divergence of the dilatation current), the nucleon mass as the basic mass scale in our universe, which is connected to the string tension \(\sigma\), and the perturbative QCD scale \(\Lambda_{\mathrm{QCD}}\), which defines the scale of the renormalized perturbative expansions. In this paper we connect all these scales to the vacuum condensate, using the field correlator method, where the string tension is expressed in terms of nonlocal field correlators, which are connected to the local condensates, while the perturbative \(\Lambda_{V}\) is connected to \(\sigma\) in the framework of the Background Perturbation Theory (BPT). We also demonstrate how the IR singularities and IR renormalons disappear in BPT making the resulting theory internally consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. C. G. Callan, Jr., S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970);

    Article  ADS  Google Scholar 

  2. S. L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15, 1712 (1977);

    Article  ADS  Google Scholar 

  3. J. C. Collins, A. Duncan, and S. D. Joglecar, Phys. Rev. D 16, 438 (1977);

    Article  ADS  Google Scholar 

  4. N. K. Nielsen, Nucl. Phys. B 120, 212 (1977).

    Article  ADS  Google Scholar 

  5. B. L. Ioffe, V. S. Fadin, and L. N. Lipatov, Quantum Chromodynamics: Perturbative and Nonperturbative Aspects, Cambridge Monographs in Part. Phys. Nucl. Phys. Cosmol. (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  6. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979);

    Article  ADS  Google Scholar 

  7. Nucl. Phys. B 147, 448 (1979).

  8. H. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Yu. A. Simonov, Phys. Rep. 372, 319 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yu. A. Simonov, Phys. Usp. 39, 313 (1996).

    Article  ADS  Google Scholar 

  11. Yu. A. Simonov, Phys. Rev. D 99, 056012 (2019); arXiv: 1804.08946.

  12. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986);

    Article  ADS  Google Scholar 

  13. M. Fabre de la Ripelle and Yu. A. Simonov, Ann. Phys. (N.Y.) 212, 235 (1991);

    Article  ADS  Google Scholar 

  14. S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45, 241 (2000);

    Article  ADS  Google Scholar 

  15. Yu. A. Simonov, Phys. At. Nucl. 66, 338 (2003).

    Article  Google Scholar 

  16. V. Shevchenko and Yu. Simonov, Phys. Rev. Lett. 85, 1811 (2000).

    Article  ADS  Google Scholar 

  17. Yu. A. Simonov, Proc. Steklov Inst. Math. 272, 234 (2011); arXiv: 1003.3608.

    Article  MathSciNet  Google Scholar 

  18. Yu. A. Simonov and V. I. Shevchenko, Adv. High Energy Phys. 2009, 873051 (2009); arXiv: 0902.1405.

    Article  ADS  Google Scholar 

  19. Yu. A. Simonov, Nucl. Phys. B 592, 350 (2001).

    Article  ADS  Google Scholar 

  20. I. H. Jorysz and C. Michael, Nucl. Phys. B 302, 448 (1988);

    Article  ADS  Google Scholar 

  21. N. A. Campbell, I. H. Jorysz, and C. Michael, Phys. Lett. B 167, 91 (1986).

    Article  ADS  Google Scholar 

  22. Yu. A. Simonov, Phys. At. Nucl. 69, 528 (2006); hep-ph/0501182.

    Article  Google Scholar 

  23. Yu. A. Simonov, Phys. At. Nucl. 65, 135 (2002).

    Article  Google Scholar 

  24. Yu. A. Simonov, Phys. At. Nucl. 66, 764 (2003); hep-ph/0109159.

    Article  Google Scholar 

  25. A. M. Badalian and B. L. G. Bakker, Phys. At. Nucl. 77, 767 (2014); arXiv: 1303.2815 [hep-ph].

    Article  Google Scholar 

  26. S. Bethke, arXiv: 1210.0325 [hep-ex]; Eur. Phys. J. C64, 689 (2009);

    Article  ADS  Google Scholar 

  27. Prog. Part. Nucl. Phys. 58, 351 (2007); hep-ex/0606035.

  28. J. Komijani, P. Petreczky, and J. H. Weber, arXiv: 2003.11703 [hep-lat]; P. Petreczky and J. H. Weber, arXiv: 2012.06193 [hep-lat].

  29. A. M. Badalian and D. S. Kuzmenko, Phys. Rev. D 65, 016004 (2002); hep-ph/0104097; A. M. Badalian, Phys. At. Nucl. 63, 2173 (2000).

  30. A. M. Badalian and Yu. A. Simonov, Phys. At. Nucl. 60, 630 (1997).

    Google Scholar 

  31. Yu. A. Simonov, Phys. At. Nucl. 74, 1223 (2011).

    Article  Google Scholar 

  32. A. L. Kataev and V. S. Molokoedov, Phys. Rev. D 92, 054008 (2015).

    Article  ADS  Google Scholar 

  33. B. S. DeWitt, Phys. Rev. 162, 1195 (1967);

    Article  ADS  Google Scholar 

  34. Phys. Rev. 162, 1239 (1967).

  35. J. Honerkamp, Nucl. Phys. B 48, 269 (1972).

    Article  ADS  Google Scholar 

  36. L. F. Abbot, Nucl. Phys. B 185, 189 (1981).

    Article  ADS  Google Scholar 

  37. Yu. A. Simonov, Phys. At. Nucl. 58, 107 (1995); hep-ph/9311247.

    Google Scholar 

  38. Yu. A. Simonov, Lect. Notes Phys. 479, 139 (1996).

  39. D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997);

    Article  ADS  Google Scholar 

  40. D. V. Shirkov, arXiv: 1208.2103 (hep-th).

  41. J. M. Cornwall, Phys. Rev. D 26, 1453 (1982);

    Article  ADS  Google Scholar 

  42. A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994).

    Article  ADS  Google Scholar 

  43. F. J. Dyson, Phys. Rev. 85, 631 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Lautrup, Phys. Lett. B 69, 109 (1978);

    Article  ADS  MathSciNet  Google Scholar 

  45. G. Parisi, Phys. Lett. B 76, 65 (1978);

    Article  ADS  MathSciNet  Google Scholar 

  46. G.’ t Hooft, in The Whys of Subnuclear Physics, Ed. by A. Zichichi (Plenum, New York, 1977).

    Google Scholar 

  47. M. Beneke, Phys. Rep. 317, 1 (1999).

    Article  ADS  Google Scholar 

  48. Yu. A. Simonov, JETP Lett. 57, 525 (1993).

    ADS  Google Scholar 

  49. A. V. Efremov and A. V. Radyushkin, Mod. Phys. Lett. A24, 2803 (2009).

    Article  ADS  Google Scholar 

  50. S. J. Brodsky, G. de Terámond, and M. Karliner, Ann. Rev. Nucl. Part. Sci. 62, 1 (2012).

    Article  ADS  Google Scholar 

  51. C. Anastasiou and G. Sterman, J. High Energy Phys. 1907, 56 (2019); arXiv: 1812.03753; G. Sterman, arXiv: 1412.5698.

  52. Yu. A. Simonov, Phys. Rev. D 91, 065001 (2015); arXiv: 1409.4964.

    Article  ADS  Google Scholar 

  53. Yu. A. Simonov, Phys. At. Nucl. 79, 419 (2016); arXiv: 1411.7223.

    Article  Google Scholar 

  54. Yu. A. Simonov, Int. J. Mod. Phys. A 31, 1650016 (2016); arXiv: 1506.0531.

    Article  ADS  Google Scholar 

  55. A. Bazavov, P. Petreczky, and J. H. Weber, Phys. Rev. D 97, 014510 (2018); arXiv: 1710.05024.

Download references

ACKNOWLEDGMENTS

The author is grateful to A.M. Badalian for very useful discussions and important suggestions and to A.L. Kataev for a useful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Simonov.

Appendices

Appendix

THE QCD VECTOR COUPLING \(\alpha_{V}(r)\)

The spin-average masses of all mesons are described by the universal static potential \(V(r)\), taken in the linear \(+\) gluon-exchange (GE) form,

$$V\left(r\right)=\sigma r-\frac{4}{3}\frac{\alpha\left(r\right)}{r}.$$
(A.1)

Here the vector coupling \(\alpha_{V}(r)\) in the coordinate space is defined via the vector coupling in the momentum space \(\alpha_{V}(Q^{2})\) as

$$\alpha_{V}\left(r\right)=\frac{2}{\pi}\int\limits_{0}^{\infty}dQ\frac{\sin\left({Qr}\right)}{Q}\alpha_{V}\left({Q^{2}}\right),$$
(A.2)

where the integration goes over three regions: small momenta \(Q\lesssim 1.5\) GeV, where \(\alpha_{V}\left({Q^{2}}\right)\) is defined by \(\Lambda_{V}(n_{f}=3)\); second interval, \(1.5\text{ GeV}\leqslant Q\leqslant m_{b}(m_{b}\cong 4.20\) GeV is the \(b\)-quark current mass), where the coupling is defined by \(\Lambda_{V}(n_{f}=4)\), and the region of large momenta, \(q\geqslant m_{b}\), where \(\Lambda_{V}(n_{f}=5)\) has to be used. This vector coupling in the coordinate spaces will be called the compound \(\alpha_{V}^{c}(r)\). It can be compared with \(\alpha_{V}(r,n_{f}=3)\), calculated via \(\alpha_{V}(Q,n_{f}=3)\), defined by the QCD constant \(\Lambda_{V}(n_{f}=3)\) over the whole region of the integration. The calculations show that the compound coupling \(\alpha_{V}^{c}(r)\) coincides with precision accuracy with \(\alpha_{V}(r,n_{f}=3)\) at all distances with exception of very small \(r\lesssim 0.1\) fm, where the compound coupling is a bit smaller and this difference has to be taken into account only for the bottomonium ground state \(\Upsilon(1S)\). Here in calculations we use the IR regulator \(M_{B}=1.15\) GeV.

The vector constants \(\Lambda_{V}(n_{f})\) are expressed via \(\Lambda_{\overline{MS}}(n_{f})\) as \(\Lambda_{V}(n_{f})=\Lambda_{\overline{MS}}\left({n_{f}}\right)\exp\left({\dfrac{a_{1}}{2\beta_{0}}}\right)\) [17] and hence \(\Lambda_{V}(n_{f}=3)=1.4753\Lambda_{\overline{MS}}(n_{f}=3)\). The value \(\Lambda_{\overline{MS}}\left({n_{f}=3}\right)=332(19)\) MeV, is now well established in lattice QCD [19]. It gives

$$\Lambda_{V}(n_{f}=3)=492(28)\text{ MeV}.$$
(A.3)

Very close value, \(\Lambda_{\overline{MS}}\left({n_{f}=3}\right)=339(10)\) MeV, was also found in the analysis of experimental data in [18].

Now we can define the characteristic scales \(r_{i}\), (\(r_{0},r_{1},r_{2}\)) of the static potential (the forth) and compare them with the lattice results [19, 20].

Firstly, with the use of (A.2) we calculate the two-loop coupling \(\alpha_{V}(r,n_{f}=3)\) and the constants \(C_{i}\), defined at three points \(r_{i}\), \(i=0\), 1, 2,

$$C_{i}=r_{i}^{2}\frac{\partial V(r)}{\partial r};\quad C_{0}=1.65,$$
(A.4)
$$C_{1}=1.0,\quad C_{2}=0.50.$$

In the coupling \(\alpha_{V}(r,n_{f}=3)\) we use \(M_{B}=1.15\) GeV and obtain

$$r_{0}=2.319\text{ GeV}^{-1}=0.459\text{ fm};$$
(A.5)
$$r_{1}=1.530\text{ GeV}^{-1}=0.303\text{ fm};$$
$$r_{2}=0.70\text{ GeV}^{-1}=0.139\text{ fm},$$

for which the following \(\alpha_{V}(r_{i})\) and the derivatives \(\alpha^{\prime}_{V}(r_{i})\) are calculated,

$$\alpha(r_{2})=0.4479,\quad\alpha^{\prime}_{V}(r_{2})=0.1967;$$
(A.6)
$$\alpha_{V}(r_{1})=0.49715,\quad\alpha^{\prime}_{V}(r_{1})=0.1363;$$
$$\alpha_{V}(r_{0})=0.5954,\quad\alpha^{\prime}_{V}(r_{0})=0.0840.$$

Now we give also \(\alpha(\lambda_{0})\) at the important point \(\lambda_{0}=1.0\) GeV\({}^{-1}=0.20\) fm,

$$\alpha(0.20\text{ fm})=0.497,$$
(A.7)

which is close to \(\alpha_{V}(r=0.20\text{ fm})=0.567\), derived in (17). Notice that the calculated \(r_{0}\) and \(r_{1}=0.303\) fm are in good agreement with the lattice result, \(r_{1}=0.3106\) fm in [41]. Also in our calculations the ratio

$$\frac{r_{1}}{r_{2}}=2.186,$$
(A.8)

is in good agreement with the same ratio, defined in the lattice calculations, \(\dfrac{r_{1}}{r_{2}}=2.198(9)\) [41].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, Y.A. The Fundamental Scale of QCD. Phys. Atom. Nuclei 84, 1195–1202 (2021). https://doi.org/10.1134/S1063778821130342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130342

Navigation