Skip to main content
Log in

Electron–Neutron Detector Array (ENDA)

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

By accurate measurement of components and energy spectrum in the knee region, problem of origin of cosmic ray can be solved. In one extensive air shower (EAS), high energy hadrons, which constitute the EAS skeleton as G.T. Zatsepin called it, carry important information for multi-parameter correlation studies. The nuclear reaction between hadrons and matter in the surrounding environment produces a large number of evaporation neutrons, moderating to thermal neutrons. At the beginning of the 21th century, a new technology, electron–neutron detector (EN-detector) was designed at Institute for Nuclear Research of Russian Academy of Science (INR RAS), and the PRImary Spectrum Measurement Array (PRISMA) project was proposed to reinforce array capability of cosmic ray composition separation and then improve measurement accuracy of cosmic ray components and energy spectrum. Besides, EN-detectors can be used for continuous environmental thermal neutron flux monitoring and its variation study is needed not only for EAS experiment background estimation but also for geophysical applications (e.g., earthquakes, thunderstorms, radioactive aerosol control, etc.) and solar activity study (e.g., solar flares, Forbush effects, etc.). Under the Chinese–Russian cooperation, we put forward to build so called EN-Detector Array (ENDA) at high altitude in China. At YangBaJing Hybrid Array (YBJHA, 4300 m a.s.l.) and at Large High Altitude Air Shower Observatory (LHAASO, 4410 m a.s.l.), two clusters of ENDA were built individually and all have obtained coincident events with the local arrays. In the near future, we plan to extend ENDA to ENDA-64 with array area of 1000 m\({}^{2}\) inside LHAASO to study the knee region of the light components (H and He). After it, ENDA will be extended up to 400 detectors with array area of 10 000 m\({}^{2}\) to extend the energy range up to 300 PeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. T. Antoni et al. (KASKADE Collab.), Astropart. Phys. 24, 1 (2005).

    Article  ADS  Google Scholar 

  2. M. Amenomori et al. (Tibet AS\(\gamma\) Collab.), Phys. Lett. B 632, 58 (2006).

    Article  ADS  Google Scholar 

  3. B. Bartoli et al. (AGRO-YBJ Collab., LHAASO Collab.), Phys. Rev. D 92, 092005 (2015).

    Article  ADS  Google Scholar 

  4. Yu. V. Stenkin and J. F. Valdés-Galicia, Mod. Phys. Lett. A 17, 1745 (2002).

    Article  ADS  Google Scholar 

  5. Yu. V. Stenkin, Nucl. Phys. B Proc. Suppl. 196, 293 (2009).

    Article  ADS  Google Scholar 

  6. Yu. V. Stenkin, V. V. Alekseenko, D. M. Gromushkin, Y. Liu, X.-H. Ma, and J. Zhao, Chin. Phys. C 37, 015001 (2013).

    Article  ADS  Google Scholar 

  7. Yu. V. Stenkin and J. F. Valdés-Galicia, in Proceedings of the 27th International Cosmic Ray Conference, Hamburg, 2001, p. 1453.

  8. Yu. V. Stenkin, D. D. Djappuev, and J. F. Valdés-Galicia, Phys. At. Nucl. 70, 1088 (2007).

    Article  Google Scholar 

  9. Yu. V. Stenkin, Nucl. Phys. B Proc. Suppl. 175–176, 326 (2008).

    Article  ADS  Google Scholar 

  10. B. D’Ettorre Piazzoli, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing, 2011, Vol. 12, p. 93.

  11. B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti, S. Z. Chen, T. L. Chen, S. W. Cui, B. Z. Dai, A. D’Amone, Danzengluobu, I. De Mitri, B. D’Ettorre Piazzoli, T. Di Girolamo, G. Di Sciascio, C. F. Feng, et al., Astropart. Phys. 81, 49 (2016).

    Article  ADS  Google Scholar 

  12. Y. Stenkin, V. Alekseenko, Z. Cai, Z. Cao, C. Cattaneo, S. Cui, E. Giroletti, D. Gromushkin, C. Guo, X. Guo, et al., Pure Appl. Geophys. 174, 2763 (2017).

    Article  ADS  Google Scholar 

  13. Y. Stenkin, V. Alekseenko, Z. Y. Cai, Z. Cao, C. Cattaneo, S. W. Cui, P. Firstov, E. Giroletti, X. Guo, H. He, Y. Liu, X. Ma, O. Shchegolev, P. Vallania, C. Vigorito, Y. Yanin, and J. Zhao, J. Environ. Radioact. 208–209, 105981 (2019).

    Article  Google Scholar 

  14. B. B. Li, V. V. Alekseenko, S.-W. Cui, T.-L. Chen, Dangzengluobu, S.-H. Feng, Q. Gao, Y. Liu, Q.-C. Huang, Y.-Y. He, M.-Y. Liu, X.-H. Ma, E. I. Pozdnyakov, O. B. Shchegolev, F. Z. Shen, Yu. V. Stenkin, et al., J. Instrum. 12, P12028 (2017).

    Article  Google Scholar 

  15. Z. Wang, Y. Q. Guo, H. Cai, J. F. Chang, T. L. Chen, Danzengluobu, Y. L. Feng, Q. Gao, Q. B. Gou, Y. Y. Guo, C. Hou, H. B. Hu, Labaciren, C. Liu, H. J. Li, J. Liu, et al., Exp. Astron. 45, 363 (2018).

    Article  ADS  Google Scholar 

  16. Liu Cheng, Xiao-Jun Bi, Tian-Lu Chen, Wen-Yi Chen, Shu-Wang Cui, Danzengluobu, Lin-Kai Ding, Xiao-Hong Ding, Cun-Feng Feng, Zhao-Yang Feng, Zhen-Yong Feng, Quan-Bu Gou, Hong-Wei Guo, Yi-Qing Guo, Hui-Hai He, Zheng-Tao Hou, et al., Chin. Phys. C 37, 026001 (2013).

    Article  ADS  Google Scholar 

  17. X. Ma, J. He, Y. Zhang, Y. Feng, Y. Guo, H. Hu, C. Liu, S.-W. Cui, B.-B. Li, S. Liu, C. Shi, Y. Liu, V. Alekseenko, K. Levochkin, V. Rulev, O. Shchegolev, et al., in Proceedings of the 36th International Cosmic Ray Conference, Madison, 2019, ID 345.

  18. M.-Y. Liu, V. Alekseenko, S.-W. Cui, T.-L. Chen, Dangzengluobu, Q. Gao, D. Kuleshov, K. Levochkin, Y. Liu, B.-B. Li, X.-H. Ma, O. Shchegolev, C. Shi, Y. Stenkin, and V. Stepanov, Astrophys. Space Sci. 365, 123 (2020).

    Article  ADS  Google Scholar 

  19. Z. Cao (LHAASO Collab.), Chin. Phys. C 34, 249 (2010).

    Article  ADS  Google Scholar 

  20. H. He (for LHAASO Collab.), Radiat. Detect. Tech. Methods 2, 7 (2018).

    Article  Google Scholar 

  21. S. Cui et al. (LHAASO Collab.), Astropart. Phys. 54, 86 (2014).

    Article  ADS  Google Scholar 

  22. Y. Liu, Z. Cao, Y. Chen, S. W. Cui, H. H. He, X. T. Huang, X. H. Ma, Q. Yuan, and X. Zhang, Astrophys. J. 826, 63 (2016).

    Article  ADS  Google Scholar 

  23. X. H. Ma, O. B. Shchegolev, and Yu. V. Stenkin, in Proceedings of the 36th International Cosmic Ray Conference, Madison, 2019, ID 431.

  24. Yu. V. Stenkin and O. B. Shchegolev, Bull. Russ. Acad. Sci.: Phys. 81, 503 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in China by National Natural Science Foundation of China (NSFC) (nos. U2031103, 11905043, U1831208, U1831129, 11963004, 12047575), Everest Discipline Construction Plan of Tibet University, and Postdoctoral Science Foundation of China under the grant no. 2019M652357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hua Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BB., Cui, SW., Shi, C. et al. Electron–Neutron Detector Array (ENDA). Phys. Atom. Nuclei 84, 941–946 (2021). https://doi.org/10.1134/S1063778821130202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130202

Navigation