Skip to main content
Log in

Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

  • Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6Не) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3Не beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  ADS  Google Scholar 

  2. G. Audi et al., Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  3. Yu. E. Penionzhkevich et al., Eur. Phys. J. A 31, 185 (2007).

    Article  ADS  Google Scholar 

  4. Yu. E. Penionzhkevich et al., J. Phys. G 36, 025104 (2009).

    Article  ADS  Google Scholar 

  5. N. K. Skobelev, N. A. Demekhina, R. Kalpakchieva, et al., Phys. Part. Nucl. Lett. 6, 208 (2009).

    Article  Google Scholar 

  6. N. K. Skobelev, A. A. Kulko, V. Kroha, et al., J. Phys. G 38, 035106 (2011).

    Article  ADS  Google Scholar 

  7. A. A. Kulko, N. K. Skobelev, V. Kroha, V. Burjan, Z. Hons, A. V. Daniel, N. A. Demekhina, R. Kalpakchieva, A. Kugler, J. Mrázek, Yu. E. Penionzhkevich, Š. Piskoř, Yu. G. Sobolev, and E. Simevckova, Bull. Russ. Acad. Sci.: Phys. 75, 538 (2011).

    Article  Google Scholar 

  8. N. K. Skobelev, A. A. Kulko, Yu. E. Penionzhkevich, E. I. Voskoboinik, V. Kroha, V. Burjan, Z. Hons, J. Mrazek, S. Piskovr, and E. Simevckova, Phys. Part. Nucl. Lett. 10, 410 (2013).

    Article  Google Scholar 

  9. N. K. Skobelev, Yu. E. Penionzhkevich, A. A. Kulko, N. A. Demekhina, V. Kroha, A. Kugler, S. M. Lukyanov, J. Mrázek, Yu. G. Sobolev, V. A. Maslov, Yu. A. Muzychka, E. I. Voskoboynik, and A. S. Fomichev, Bull. Russ. Acad. Sci.: Phys. 77, 360 (2013).

    Article  Google Scholar 

  10. S. Y. F. Chu, L. P. Ekström, and R. B. Firestone, The Lund/LBNL Nuclear Data, Search Version (1999). http://nucleardata.nuclear.lu.se/nucleardata/toi/

    Google Scholar 

  11. S. M. Lukyanov et al., J. Phys. G 41, 035102 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  12. N. K. Skobelev, Phys. At. Nucl. 77, 1415 (2014).

    Article  Google Scholar 

  13. L. Meyer-Schytzmeister et al., Nucl. Phys. A 199, 593 (1973).

    Article  ADS  Google Scholar 

  14. R. W. Barnand and G. D. Jones, Nucl. Phys. A 111, 17 (1968).

    Article  ADS  Google Scholar 

  15. N. Anyas-Weiss et al., Phys. Rep. 12, 201 (1974).

    Article  ADS  Google Scholar 

  16. W. R. McMurray et al., Nucl. Phys. A 265, 517 (1976).

    Article  ADS  Google Scholar 

  17. R. A. Broglia and A. Winther, Heavy Ion Reactions, Lecture Notes (AddisonWesley, Redwood City, USA, 1991), Vol. 1, p. 349.

    Google Scholar 

  18. P. J. A. Buttle and L. J. B. Goldfarb, Nucl. Phys. A 176, 299 (1971).

    Article  ADS  Google Scholar 

  19. N. K. Skobelev, Phys. At. Nucl. 78, 652 (2015).

    Article  Google Scholar 

  20. M. N. Rao, J. Rapaport, T. A. Belote, and W. E. Dorenbusch, Nucl. Phys. A 151, 351 (1970).

    Article  ADS  Google Scholar 

  21. V. V. Samarin and K. V. Samarin, Bull. Russ. Acad. Sci.: Phys. 76, 450 (2012).

    Article  Google Scholar 

  22. V. V. Samarin, in Proceedings of the 7th International Symposium on Exotic Nuclei EXON 2014, Kaliningrad, Russia, Sept. 8–13, 2014 (JINR, Dubna, 2014), p. 30.

    Google Scholar 

  23. A. A. Kulko, N. A. Demekhina, R. Kalpakchieva, et al., J. Phys. G 34, 2297 (2007).

    Article  ADS  Google Scholar 

  24. D. E. DiGregorio, K. T. Lesko, B. A. Harmon, et al., Phys. Rev. C 42, 2108 (1990).

    Article  ADS  Google Scholar 

  25. S. A. Karamian, J. J. Carroll, N. V. Aksenov, et al., Nucl. Instrum. Methods Phys. Res. A646, 87 (2011).

    Article  ADS  Google Scholar 

  26. Y. Nagame et al., Phys. Rev. C 41, 889 (1990).

    Article  ADS  Google Scholar 

  27. N. Chakravarty, P. K. Sarkar, and S. Ghosh, Phys. Rev. C 45, 1171 (1992).

    Article  ADS  Google Scholar 

  28. V. R. Casella, Report LA-5830-T (Los Alamos Scientific Laboratory, 1975).

    Google Scholar 

  29. A. Lemasson, A. Navin, and M. Rejmund, Phys. Lett. B 697, 454 (2011).

    Article  ADS  Google Scholar 

  30. A. Shrivastava, A. Navin, and A. Lemasson, Phys. Rev. Lett. 103, 232702 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Skobelev.

Additional information

Original Russian Text © N.K. Skobelev, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 4, pp. 347–355.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skobelev, N.K. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios. Phys. Atom. Nuclei 79, 534–542 (2016). https://doi.org/10.1134/S1063778816040207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816040207

Navigation