Skip to main content
Log in

Calculation of the rate of muon transfer from a proton to neon on the basis of the two-center coulomb basis

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of an improved calculation of the rate of muon transfer from the 1s state of the muonic-hydrogen atom to neon at collision energies ranging between 10−4 and 15 eV are presented. The calculation in question is performed within the method of perturbed stationary states, where the wave function for the three-particle system formed by a muon, a proton, and a neon nucleus is constructed in the form of an expansion in eigenfunctions of the two-center Coulomb problem formulated in terms of Jacobi coordinates for the entrance reaction channel. This approach makes it possible to obtain an asymptotically correct description of the entrance channel at a low collision energy: one obtains a correct dissociation limit, spurious long-range potentials are absent, and a polarization attraction between a muonic-hydrogen atom and a neon atom appears in a natural way. Moreover, one can readily take into account electron screening, which is of importance at low collision energies. All flaws in the description come into play only in the muon-transfer channel, where one does not expect that their effect is significant because of high energies of divergence of reaction products. The calculation performed within this scheme previously permitted explaining special features observed experimentally in the behavior of the muon-transfer rate as a function of temperature of the hydrogen-neon mixture being considered. In the present study, a more refined algorithm for constructing basis functions in the two-center Coulomb problem was used, whereby agreement between the calculated values of the muon-transfer rate and experimental data was improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Schellenberg, Muon Cat. Fusion 5–6, 73 (1990–91).

    Google Scholar 

  2. R. Jacot-Guillarmod, Phys. Rev. A 51, 2179 (1995).

    Article  ADS  Google Scholar 

  3. Yu. S. Sayasov, Helv. Phys. Acta 63, 547 (1990).

    Google Scholar 

  4. S. V. Romanov, Eur. Phys. J. D 28, 11 (2004).

    Article  ADS  Google Scholar 

  5. A. Dupays, Phys. Rev. Lett. 93, 043401 (2004).

    Article  ADS  Google Scholar 

  6. S. S. Gershtein, Sov. Phys. JETP 16, 501 (1962).

    ADS  Google Scholar 

  7. R. Pohl et al., Nature 466, 213 (2010).

    Article  ADS  Google Scholar 

  8. D. Taqqu, Preprint No. 95-07, PSI (Villigen, 1995).

  9. R. Pohl et al., Hyperf. Interact. 119, 77 (1999).

    Article  ADS  Google Scholar 

  10. A. A. Radzig and B. M. Smirnov, Reference data on Atoms, Molecules and Ions (Springer, Heidelberg, 1985; Energoatomizdat, Moscow, 1986), p. 137.

    Book  Google Scholar 

  11. S. I. Vinitsky and L. I. Ponomarev, Sov. J. Part. Nucl. 13, 557 (1982).

    Google Scholar 

  12. A. Dupays, B. Lepetit, J. A. Beswick, et al., Phys. Rev. A 69, 062501 (2004).

    Article  ADS  Google Scholar 

  13. G. Fiorentini and G. Torelli, Nuovo Cimento A 36, 317 (1976).

    Article  ADS  Google Scholar 

  14. K. Kobayashi, T. Ishihara, and N. Toshima, Muon Cat. Fusion 2, 191 (1988).

    Google Scholar 

  15. I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976), pp. 15–17, 171–178, 190–196 [in Russian].

    Google Scholar 

  16. D. I. Abramov, S. Yu. Ovchinnikov, and E. A. Solov’ev, Phys. Rev. A 42, 6366 (1990).

    Article  ADS  Google Scholar 

  17. G. Jaffé, Z. Phys. 87, 535 (1934).

    Article  ADS  Google Scholar 

  18. W. G. Baber and H. R. Hassé, Proc. Cambridge Philos. Soc. 31, 564 (1935).

    Article  ADS  MATH  Google Scholar 

  19. D. R. Bates and T. R. Carson, Proc. R. Soc. London, Ser. A 234, 207 (1956).

    Article  ADS  MATH  Google Scholar 

  20. G. Hadinger, M. Aubert-Frécon, and G. Hadinger, J. Phys. B 22, 697 (1989).

    Article  ADS  Google Scholar 

  21. A. S. Davydov, Quantum Mechanics (Pergamon, 1965).

    Google Scholar 

  22. G. Holzwarth and H. J. Pfeiffer, Z. Phys. A 272, 311 (1975).

    Article  ADS  Google Scholar 

  23. A. V. Kravtsov, A. I. Mikhailov, and N. P. Popov, J. Phys. B 19, 1323 (1986).

    Article  ADS  Google Scholar 

  24. E. Clementi and C. Roetti, At. Data Nucl.Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Romanov.

Additional information

Original Russian Text © S.V. Romanov, 2014, published in Yadernaya Fizika, 2014, Vol. 77, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, S.V. Calculation of the rate of muon transfer from a proton to neon on the basis of the two-center coulomb basis. Phys. Atom. Nuclei 77, 1–12 (2014). https://doi.org/10.1134/S1063778813120144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813120144

Keywords

Navigation