Skip to main content
Log in

Dynamics of the Weyl scale invariant non-BPS p = 3 brane

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this paper a Weyl scale-invariant p = 3-brane scenario is introduced, with the brane embedded in a higher-dimensional bulk space with N = 1, 5D Super-Weyl symmetry. Its action, which describes its long wave oscillation modes into the ambient superspace and breaks the target symmetry down to the lower dimensional Weyl W(1, 3) symmetry, is constructed by the approach of coset method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Brax and C. Bruck, Class. Quantum. Grav. 20, R201 (2003).

    Article  MATH  ADS  Google Scholar 

  2. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. A. Sen, J. High Energy Phys. 9910, 008 (1999).

    Article  ADS  Google Scholar 

  4. M. R. Gaberdiel, Class. Quantum. Grav. 17, 3483 (2000); A. Sen, hep-th/9904207.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. T. E. Clark, M. Nitta, and T. ter Veldhuis, Phys. Rev. D 70, 105005 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. B. Green and J. H. Schwarz, Phys. Lett. B 136, 367 (1984); M. B.Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge Univ. Press, Cambridge, 1987), Vol. 2.

    Article  ADS  Google Scholar 

  7. M. Blagojević, Gravitation and Gauge Symmetries (IOP, Bristol, 2002).

    Book  MATH  Google Scholar 

  8. R. Utiyama, Prog. Theor. Phys. 50, 2080 (1973); Prog. Theor. Phys. 53, 565 (1975).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. K. Hayashi and T. Kugo, Prog. Theor. Phys. 61, 334 (1979).

    Article  ADS  Google Scholar 

  10. A. Bregman, Prog. Theor. Phys. 49, 667 (1973).

    Article  ADS  Google Scholar 

  11. K. Hayashi, M. Kasuya, and T. Shirafuji, Prog. Theor. Phys. 57, 431 (1977).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Aurilia, A. Smailagic, and E. Spallucci, Phys. Rev. D 51, 4410 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. A. Garcia, R. Linares, and J. David Vergara, Phys. Lett. B 503, 154 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. C. Alvear, R. Amorim, and J. Barcelos-Neto, Phys. Lett. B 273, 415 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. S. Alves and J. Barcelos-Neto, Europhys. Lett. 7, 395 (1988); Europhys. Lett. 8, 90(E) (1989).

    Article  ADS  Google Scholar 

  16. J. A. Nieto and C. Nuñez, Nuovo Cimento B 106, 1045 (1991).

    Article  ADS  Google Scholar 

  17. J.D. Vergara, in Proceedings of the 3rd Latin American Symposium on High-Energy Physics, Ed. by E. Nardi (IOP, Bristol, 2000).

    Google Scholar 

  18. J. A. Nieto,Mod. Phys. Lett. A 16, 2567 (2001).

    Article  MATH  ADS  Google Scholar 

  19. Lu-Xin Liu, Phys. Rev. D 74, 045030 (2006) [hepth/0602180].

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Georgi, Phys. Rev. Lett. 98, 221601 (2007); Phys. Lett. B 650, 275 (2007).

    Article  ADS  Google Scholar 

  21. Lu-Xin Liu, Mod. Phys. Lett. A 20, 2545 (2005) [hep-ph/0408210].

    Article  MATH  ADS  Google Scholar 

  22. T. E. Clark, T. Lee, S. T. Love, and G.-H. Wu, Phys. Rev. D 57, 5912 (1998).

    Article  ADS  Google Scholar 

  23. T. E. Clark, M. Nitta, and T. ter Veldhuis, Phys. Rev. D 67, 085026 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. E. Clark, M. Nitta, and T. ter Veldhuis, Phys. Rev. D 70, 125011 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  25. E. A. Ivanov and V. I. Ogievetsky, Teor.Mat. Fiz. 25, 164 (1975).

    Google Scholar 

  26. T. E. Clark and S. T. Love, Phys. Rev. D 61, 057902 (2000).

    Article  ADS  Google Scholar 

  27. Lu-Xin Liu, Eur. Phys. J. C 62, 615 (2009) [arXiv:0802.1299 [hep-th]].

    Article  MATH  ADS  Google Scholar 

  28. P. West, J. High Energy Phys. 0002, 24 (2000).

    Article  ADS  Google Scholar 

  29. J. Hughes and J. Polchinski, Nucl. Phys. B 278, 147 (1986); C. P. Burgess, E. Filotas, M. Klein, and F. Quevedo, J. High Energy Phys. 0310, 041 (2003); J. Bagger and A. Galperin, Phys. Lett. B 336, 25 (1994); Phys. Lett. B 412, 296 (1997); Phys. Rev. D 55, 1091 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Bellucci, E. Ivanov, and S. Krivonos, Phys. Lett. B 460, 348 (1999); M. Rocek and A. A. Tseytlin, Phys. Rev. D 59, 106001 (1999); S. Bellucci, E. Ivanov, and S. Krivonos, Fortschr. Phys. 48, 19 (2000); F. Gonzalez-Rey, I. Y. Park, and M. Rocek, Nucl. Phys. B 544, 243 (1999).

    Article  ADS  Google Scholar 

  31. I. N. McArthur, hep-th/9908045; S. Bellucci, E. Ivanov, and S. Krivonos, Phys. Lett. B 482, 233 (2000); Nucl. Phys. B: Proc. Suppl. 102, 26 (2001); E. Ivanov, Theor.Math. Phys. 129, 1543 (2001).

    Google Scholar 

  32. O. Barwald and P. C. West, Phys. Lett. B 476, 157 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  33. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983); E. Papantonopoulos, hepth/ 0202044; H. A. Chamblin and H. S. Reall, Nucl. Phys. B 562, 133 (1999).

    Article  ADS  Google Scholar 

  34. G. R. Dvali and M. A. Shifman, Nucl. Phys. B 504, 127 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. N. Maru, N. Sakai, Y. Sakamura, and R. Sugisaka, Nucl. Phys. B 616, 47 (2001); Phys. Lett. B 496, 98 (2000); M. Eto, N. Maru, and N. Sakai, Nucl. Phys. B 696, 3 (2004).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Xin Liu.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, LX. Dynamics of the Weyl scale invariant non-BPS p = 3 brane. Phys. Atom. Nuclei 74, 1684–1689 (2011). https://doi.org/10.1134/S1063778811120076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811120076

Keywords

Navigation