Skip to main content
Log in

Z0-boson decays in a strong electromagnetic field

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The probability of Z 0-boson decay to a pair of charged fermions in a strong electromagnetic field, Z 0\( \bar f \) f, is calculated. On the basis of a method that employs exact solutions to relativistic wave equations for charged particles, an analytic expression for the partial decay width Γ(ϰ) = Γ(Z 0\( \bar f \) f) is obtained at an arbitrary value of the parameter ϰ = \( eM_Z^{ - 3} \sqrt { - (F_{\mu \nu } q^\nu )^2 } \), which characterizes the external-field strength. The total Z 0-boson decay width in an intense electromagnetic field, Γ Z (ϰ), is calculated by summing these results over all known generations of charged leptons and quarks. It is found that, in the region of relatively weak fields (ϰ < 0.06), the field-induced corrections to the standard Z 0-boson decay width in a vacuum do not exceed 2%. As ϰ increases, the total decay width Γ Z (ϰ) develops oscillations against the background of its gradual decrease to the absolute-minimum point. At ϰmin = 0.445, the total Z 0-boson decay width reaches the minimum value of Γ Z min) = 2.164 GeV, which is smaller than the Z 0-boson decay width in a vacuum by more than 10%. In the region of superstrong fields (ϰ > 1), Γ Z (ϰ) grows monotonically with increasing external-field strength. In the region ϰ > 5, the t-quark-production process Z 0\( \bar t \) t, which is forbidden in the absence of an external field, begins contributing significantly to the total decay width of the Z 0 boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALEPH Collab. (R. Barate et al.), Eur. Phys. J. C 14, 1 (2000); DELPHI Collab. (P. Abreu et al.), Eur. Phys. J. C 16, 371 (2000); L3 Collab. (M. Acciarri et al.), Eur. Phys. J. C 16, 1 (2000); OPAL Collab. (G. Abbiendi et al.), Eur. Phys. J. C 19, 587 (2001).

    Article  ADS  Google Scholar 

  2. W.-M. Yao et al. (ParticleDataGroup), J. Phys. G 33, 1 (2006).

    Article  ADS  Google Scholar 

  3. ALEPH Collab., DELPHI Collab., L3 Collab., OPAL Collab., SLD Collab., LEP Electroweak Working Group, SLD Electroweak, Heavy Flavour Groups, Phys. Rep. 427, 257 (2006); [hep-ex/0509008].

    ADS  Google Scholar 

  4. M. I. Vysotsky, V. A. Novikov, L. B. Okun, and A. N. Rozanov, Usp. Fiz. Nauk 166, 539 (1996) [Phys. Usp. 39, 503 (1996)]; [hep-ph/9606253]; V. A. Novikov, L. B. Okun, A. N. Rozanov, and M. I. Vysotsky, Rep. Prog. Phys. 62, 1275 (1999) [hep-ph/9906465].

    Article  Google Scholar 

  5. R. Harlander, Acta Phys. Pol. B 29, 2691 (1998) [hep-ph/9806524].

    ADS  Google Scholar 

  6. D. Bardin, M. Grunewald, and G. Passarino, hepph/9902452.

  7. G. Degrassi and P. Gambino, Nucl. Phys. B 567, 3 (2000) [hep-ph/9905472].

    Article  Google Scholar 

  8. M. Carena, A. deGouvea, A. Freitas, and M. Schmitt, Phys. Rev. D 68, 113007 (2003) [hep-ph/0308053].

  9. A. Yu. Ignatiev, G. C. Joshi, and M. Matsuda, Mod. Phys. Lett. A 11, 871 (1996) [hep-ph/9406398].

    Article  ADS  Google Scholar 

  10. L. D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948); C. N. Yang, Phys. Rev. 77, 242 (1950).

    Google Scholar 

  11. T. M. Tinsley, Phys. Rev. D 65, 013008 (2002) [hepph/0106142].

  12. Z. Luo, Phys. Rev. D 67, 115007 (2003) [hepph/0301051].

  13. J. I. Kapusta and S. M. H. Wong, Phys. Rev. D 62, 037301 (2000) [hep-ph/0002192].

  14. V. N. Baĭer, V. M. Katkov, and V. M. Strakhovenko, Usp. Fiz. Nauk 159, 455 (1989) [Sov. Phys. Usp. 32, 972 (1989)].

    Google Scholar 

  15. S. P. Moller, CERN Report 94-05.

  16. S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983; Mir, Moscow, 1985).

    Book  Google Scholar 

  17. A. A. Sokolov and I. M. Ternov, Relativistic Electron (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  18. V. I. Ritus and A. I. Nikishov, Quantum Electrodynamics of Phenomena in Intense Fields, Trudy FIAN SSSR, vol. 111 (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  19. I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, Interaction of Charged Particles with Strong Electromagnetic Fields (Izd-vo MGU, Moscow, 1982) [in Russian].

    Google Scholar 

  20. A. V. Borisov, A. S. Vshivtsev, V. Ch. Zhukovsky, and P. A. Eminov, Usp. Fiz. Nauk 167, 241 (1997) [Phys. Usp. 40, 229 (1997)].

    Article  Google Scholar 

  21. A. V. Kurilin, Nuovo Cimento A 112, 977 (1999) [hep-ph/0210194].

    Article  ADS  Google Scholar 

  22. A. V. Kurilin and A. I. Ternov, Yad. Fiz. 63, 1944 (2000) [Phys. At. Nucl. 63, 1855 (2000)]; Pis’ma Zh. Éksp. Teor. Fiz. 63, 305 (1996) [JETP Lett. 63, 311 (1996)].

    Google Scholar 

  23. A. V. Kurilin, Yad. Fiz. 67, 2116 (2004) [Phys. At. Nucl. 67, 2095 (2004)]; [hep-ph/0709.0335].

    Google Scholar 

  24. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

  25. A. V. Borisov, V. Ch. Zhukovsky, M. Yu. Knizhnikov, and A. N. Prokopenya, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 30(5), 44 (1987).

    Google Scholar 

  26. A. Sirlin, Phys. Rev. D 22, 971 (1980).

    Article  ADS  Google Scholar 

  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964; Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurilin.

Additional information

Original Russian Text © A.V. Kurilin, 2009, published in Yadernaya Fizika, 2009, Vol. 72, No. 6, pp. 1078–1093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurilin, A.V. Z0-boson decays in a strong electromagnetic field. Phys. Atom. Nuclei 72, 1034–1049 (2009). https://doi.org/10.1134/S1063778809060167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809060167

PACS numbers

Navigation