Skip to main content
Log in

Potential of interaction between nuclei and nucleon-density distribution in nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Nuclear-interaction potentials that are calculated by using Skyrme forces within the extended Thomas-Fermi approximation and Hartree-Fock-Bardeen-Cooper-Schrieffer theory are studied in detail. It is shown that the nuclear component of the potential simulating the interaction between nuclei grows with increasing number of neutrons in colliding isotopes and with increasing diffuseness parameter of the density distribution in interacting nuclei. An increase in the diffuseness parameter of the density distribution in interacting nuclei leads to a decrease in the height of the barrier between the nuclei and to an increase in the depth of the capture well and in the fusion cross section. It is shown that the diffuseness parameter calculated for the nuclear component of the potential at large distance between interacting nuclei by using Skyrme forces exceeds the diffuseness parameter of the nucleon-density distribution in these nuclei by a factor of about 1.5. Realistic values of the diffuseness parameter of nuclear interaction between medium-mass and heavy nuclei fall within the range a ≈ 0.75–0.90 fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bass, Nuclear Reactions with Heavy Ions (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  2. G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983).

    Google Scholar 

  3. P. Frobrich and R. Lipperheide, Theory of Nuclear Reactions (Clarendon, Oxford, 1996).

    Google Scholar 

  4. J. Blocki et al., Ann. Phys. (N.Y.) 105, 427 (1977).

    Article  ADS  Google Scholar 

  5. W. D. Myers and W. J. Swiatecki, Phys. Rev. C 62, 044610 (2000).

    Google Scholar 

  6. H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev. C 20, 992 (1979).

    Article  ADS  Google Scholar 

  7. A. Winther, Nucl. Phys. A 594, 203 (1995).

    Article  ADS  Google Scholar 

  8. V. Yu. Denisov, Phys. Lett. B 526, 315 (2002).

    Article  ADS  Google Scholar 

  9. V. Yu. Denisov and W. Nörenberg, Eur. Phys. J. A 15, 375 (2002).

    Article  ADS  Google Scholar 

  10. V. Yu. Denisov, in Proceedings of the Symposium on Nuclear Clusters: from Light Exotic to Superheavy Nuclei, Rauischholzhausen Castle, Germany, 2002, Ed. by R. Jolos and W. Scheid (EP Systema, Debrecen, Hungary, 2003), p. 427.

    Google Scholar 

  11. V. Yu. Denisov, AIP Conf. Proc. 704, 433 (2004).

    Google Scholar 

  12. V. Yu. Denisov and S. Hofmann, Phys. Rev. C 61, 034606 (2000).

  13. G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys. A 678, 24 (2000).

    Article  ADS  Google Scholar 

  14. V. I. Zagrebaev, Phys. Rev. C 64, 034606 (2001).

    Google Scholar 

  15. Y. Abe, B. Bouriquet, G. Kosenko, and C. Shen, Nucl. Phys. A 734, 168 (2004).

    Article  ADS  Google Scholar 

  16. W. J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, Phys. Rev. C 71, 014602 (2005).

    Google Scholar 

  17. Y. Aritomo and M. Ohta, Nucl. Phys. A 753, 152 (2005).

    Article  ADS  Google Scholar 

  18. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980).

    Google Scholar 

  19. M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  20. M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, Mass., 1997).

    MATH  Google Scholar 

  21. V. M. Strutinskii, A. G. Magner, and V. Yu. Denisov, Yad. Fiz. 42, 1093 (1985) [Sov. J. Nucl. Phys. 42, 690 (1985)]; Z. Phys. A 322, 149 (1985).

    Google Scholar 

  22. V. Yu. Denisov and V. A. Nesterov, Ukr. Fiz. Zh. 45, 1164 (2000); Yad. Fiz. 65, 847 (2002) [Sov. J. Nucl. Phys. 65, 814 (2002)].

    Google Scholar 

  23. V. A. Nesterov, Ukr. Fiz. Zh. 49, 225 (2004).

    MathSciNet  Google Scholar 

  24. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  25. J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422, 103 (1984).

    Article  ADS  Google Scholar 

  26. S. A. Fayans et al. Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  27. J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).

    Article  ADS  Google Scholar 

  28. M. Dasgupta, D. J. Hinde, N. Rowley, et al., Annu. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  29. A. B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).

    Article  ADS  Google Scholar 

  30. K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).

    Article  MATH  ADS  Google Scholar 

  31. V. Yu. Denisov, Yad. Fiz. 62, 1431 (1999) [Phys. At. Nucl. 62, 1349 (1999)]; Eur. Phys. J. A 7, 87 (2000).

    Google Scholar 

  32. K. Hagino, N. Rowley, and M. Dasgupta, Phys. Rev. C 67, 054603 (2003).

    Google Scholar 

  33. D. J. Hinde, A. C. Berriman, R. D. Butt, et al., Eur. Phys. J. A 13, 149 (2002).

    Article  ADS  Google Scholar 

  34. M. Dasgupta and D. J. Hinde, Nucl. Phys. A 734, 148 (2004).

    Article  ADS  Google Scholar 

  35. J. O. Newton, R. D. Butt, M. Dasgupta, et al., Phys. Rev. C 70, 024605 (2004).

  36. C. R. Morton, A. C. Berriman, M. Dasgupta, et al., Phys. Rev. C 60, 044608 (1999).

    Google Scholar 

  37. H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  38. K. A. Brueckner, J. B. Buchler, and M. M. Kelly, Phys. Rev. 173, 944 (1968).

    Article  ADS  Google Scholar 

  39. G. Bertsch, Z. Phys. A 289, 103 (1978).

    Article  Google Scholar 

  40. J. F. Liang, D. Shapira, C. J. Gross, et al., Phys. Rev. Lett. 91, 152701 (2003).

    Google Scholar 

  41. S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).

    Article  ADS  Google Scholar 

  42. R. C. Barrett and D. F. Jackson, Nuclear Sizes and Structure (Clarendon, Oxford, 1977; Naukova Dumka, Kiev, 1981).

    Google Scholar 

  43. K. Siwek-Wilczynska and J. Wilczynski, Phys. Rev. C 69, 024611 (2004).

    Google Scholar 

  44. I. Tanihata, D. Hirata, T. Kobayashi, et al., Phys. Lett. B 289, 261 (1992).

    Article  ADS  Google Scholar 

  45. V. Yu. Denisov and H. Ikezoe, Phys. Rev. C 72, 064613 (2005).

  46. B. Imanishi, V. Denisov, and T. Motobayashi, Phys. Rev. C 55, 1946 (1997).

    Article  ADS  Google Scholar 

  47. S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  48. T. Kibedi and R. H. Spear, At. Data Nucl. Data Tables 80, 35 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Denisov, V.A. Nesterov, 2006, published in Yadernaya Fizika, 2006, Vol. 69, No. 9, pp. 1507–1519.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, V.Y., Nesterov, V.A. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nuclei 69, 1472–1484 (2006). https://doi.org/10.1134/S1063778806090067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806090067

PACS numbers

Navigation