Skip to main content
Log in

Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the Lifshitz topological transitions and the corresponding changes in the galvano-magnetic properties of a metal from the point of view of the general classification of open electron trajectories arising on Fermi surfaces of arbitrary complexity in the presence of magnetic field. The construction of such a classification is the content of the Novikov problem and is based on the division of non-closed electron trajectories into topologically regular and chaotic trajectories. The description of stable topologically regular trajectories gives a basis for a complete classification of non-closed trajectories on arbitrary Fermi surfaces and is connected with special topological structures on these surfaces. Using this description, we describe here the distinctive features of possible changes in the picture of electron trajectories during the Lifshitz transitions, as well as changes in the conductivity behavior in the presence of a strong magnetic field. As it turns out, the use of such an approach makes it possible to describe not only the changes associated with stable electron trajectories, but also the most general changes of the conductivity diagram in strong magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

REFERENCES

  1. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  2. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, Adam Hilger, New York, 1973).

  3. G. E. Volovik, J. Low Temp. Phys. 43, 47 (2017).

    Article  Google Scholar 

  4. G. E. Volovik, Phys. Usp. 61, 89 (2018).

    Article  ADS  Google Scholar 

  5. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957).

    Google Scholar 

  6. I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 8, 875 (1959).

    Google Scholar 

  7. I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11, 137 (1960).

    Google Scholar 

  8. S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).

    Article  Google Scholar 

  9. A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).

    Article  Google Scholar 

  10. I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).

    Article  Google Scholar 

  11. S. P. Tsarev, private commun. (1992–1993).

  12. I. A. Dynnikov, Math. Notes 53, 494 (1993).

    Article  Google Scholar 

  13. A. V. Zorich, in Proceedings of the Conference on Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p. 479.

  14. I. A. Dynnikov, in Proceedings of the 2nd European Congress of Mathematics ECM2, BuDA, 1996.

  15. I. A. Dynnikov, in Solitons, Geometry, and Topology: On the Crossroad, Ed. by V. M. Buchstaber and S. P. Novikov, Vol. 179 of Am. Math. Soc. Transl., Ser. 2 (AMS, Providence, RI, 1997), p. 45.

  16. I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).

    Article  Google Scholar 

  17. S. P. Novikov and A. Ya. Maltsev, JETP Lett. 63, 855 (1996).

    Article  ADS  Google Scholar 

  18. A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).

    Article  ADS  Google Scholar 

  19. S. P. Novikov and A. Ya. Maltsev, Phys. Usp. 41, 231 (1998).

    Article  ADS  Google Scholar 

  20. A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).

    Article  ADS  Google Scholar 

  21. A. Ya. Maltsev and S. P. Novikov, Proc. Steklov Inst. Math. 302, 279 (2018).

    Article  Google Scholar 

  22. S. P. Novikov, R. De Leo, I. A. Dynnikov, and A. Ya. Maltsev, J. Exp. Theor. Phys. 129, 710 (2019).

    Article  ADS  Google Scholar 

  23. A. V. Zorich, Ann. Inst. Fourier 46, 325 (1996).

    Article  Google Scholar 

  24. A. Zorich, in Solitons, Geometry, and Topology: On the Crossroad, Ed. by V. M. Buchstaber and S. P. Novikov, Vol. 179 of Am. Math. Soc. Transl., Ser. 2 (AMS, Providence, RI, 1997), p. 173. https://doi.org/10.1090/trans2/179

  25. A. Zorich, in Pseudoperiodic Topology, Ed. by V. I. Arnold, M. Kontsevich, and A. Zorich, Vol. 197 of Am. Math. Soc. Transl., Ser. 2 (AMS, Providence, RI, 1999), p. 135. https://doi.org/10.1090/trans2/197

  26. R. De Leo, Russ. Math. Surv. 55, 166 (2000).

    Article  Google Scholar 

  27. R. De Leo, Russ. Math. Surv. 58, 1042 (2003).

    Article  Google Scholar 

  28. A. Ya. Maltsev and S. P. Novikov, arXiv: cond-mat/0304471. https://doi.org/10.1023/B:JOSS.0000019835.01125.92

  29. A. Ya. Maltsev and S. P. Novikov, Solid State Phys., Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).

    Google Scholar 

  30. A. Zorich, in Frontiers in Number Theory, Physics and Geometry, Vol. 1: On Random Matrices, Zeta Functions and Dynamical Systems, Ecole de physique des Houches, France, March 9–21 2003, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove (Springer, Berlin, 2006), p. 439.

  31. R. De Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).

    Article  Google Scholar 

  32. R. De Leo and I. A. Dynnikov, Geom. Dedic. 138, 51 (2009).

    Article  Google Scholar 

  33. I. A. Dynnikov, Proc. Steklov Inst. Math. 263, 65 (2008).

    Article  MathSciNet  Google Scholar 

  34. A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).

    MathSciNet  Google Scholar 

  35. A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).

    Article  MathSciNet  Google Scholar 

  36. I. Dynnikov and A. Skripchenko, in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Vol. 234 of Advances in the Mathematical Sciences, Am. Math. Soc. Transl. Ser. 2, Ed. by V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever (Am. Math. Soc., Providence, RI, 2014), p. 173; arXiv: 1309.4884.

  37. I. Dynnikov and A. Skripchenko, Trans. Moscow Math. Soc. 76, 287 (2015).

    Article  Google Scholar 

  38. A. Avila, P. Hubert, and A. Skripchenko, Invent. Math. 206, 109 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Avila, P. Hubert, and A. Skripchenko, Bull. Soc. Math. France 144, 539 (2016).

    Article  MathSciNet  Google Scholar 

  40. R. D. Leo, in Advanced Mathematical Methods in Biosciences and Applications, Ed. by F. Berezovskaya and B. Toni, Part of STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health (Springer, Cham, 2019), p. 53.

  41. A. Ya. Maltsev and S. P. Novikov, Russ. Math. Surv. 74, 141 (2019).

    Article  Google Scholar 

  42. I. A. Dynnikov, A. Ya. Maltsev, and S. P. Novikov, Russ. Math. Surv. 77 (6), 109 (2022); arXiv: 2306.11257.

    Article  Google Scholar 

  43. A. Ya. Maltsev, J. Exp. Theor. Phys. 124, 805 (2017).

    Article  ADS  Google Scholar 

  44. A. Ya. Maltsev, J. Exp. Theor. Phys. 125, 896 (2017).

    Article  ADS  Google Scholar 

  45. A. Ya. Maltsev, J. Exp. Theor. Phys. 129, 116 (2019).

    Article  ADS  Google Scholar 

  46. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).

    Google Scholar 

  47. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Sci. Technol., Oxford, UK, 1988).

    Google Scholar 

Download references

Funding

The research was carried out at the expense of the grant of the Russian Science Foundation no. 21-11-00331, “Geometric methods in the Hamiltonian theory of integrable and almost integrable systems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Maltsev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, A.Y. Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces. J. Exp. Theor. Phys. 137, 706–724 (2023). https://doi.org/10.1134/S1063776123110079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123110079

Navigation