Skip to main content
Log in

Low-Dimensional Magnetism in Namibite Cu(BiO)2VO4OH

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A synthetic analog of rare secondary mineral namibite Cu(BiO)2VO4OH has been obtained by the hydrothermal method. The crystal structure of this compound contains isolated uniform chains of vertex-connected copper–oxygen octahedra. Magnetic susceptibility (χ) and magnetization (M) measurements have not indicated the long-range order in the temperature interval 2–300 K. Specific heat (Cp) measurements suggest the formation of a spin-liquid state at low temperatures. X-band electron paramagnetic resonance data recorded at low temperatures have demonstrated only a signal from impurities. First-principles calculations have estimated the exchange interaction in the chains as J = 555 K, whereas exchange interactions between the chains turn out to be one to two orders of magnitude smaller. Thus, namibite represents a rare example of an unordered half-integer spin chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, npj Quantum Mater. 3, 18 (2018).

  2. T. Masuda, A. Zheludev, A. Bush, et al., Phys. Rev. Lett. 92, 177201 (2004).

  3. S.-L. Drechsler, O. Volkova, A. N. Vasiliev, et al., Phys. Rev. Lett. 98, 077202 (2007).

  4. M. Isobe, E. Ninomiya, A. N. Vasiliev, and Y. Ueda, J. Phys. Soc. Jpn. 71, 1423 (2002).

    Article  ADS  Google Scholar 

  5. S.-L. Drechsler, J. Richter, A. A. Gippius, et al., Europhys. Lett. 73, 83 (2006).

    Article  ADS  Google Scholar 

  6. A. N. Vasiliev, L. A. Ponomarenko, H. Manaka, et al., Phys. Rev. B 64, 024419 (2001).

  7. A. I. Smirnov, M. N. Popova, A. B. Sushkov, et al., Phys. Rev. B 59, 14546 (1999).

    Article  ADS  Google Scholar 

  8. E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

    Article  ADS  Google Scholar 

  9. J. C. Bonner and M. E. Fisher, Phys. Rev. A 135, 640 (1964).

    Article  ADS  Google Scholar 

  10. O. von Knorring and T. G. Sahama, Schweiz. Miner. Petrog. 61, 7 (1981).

    Google Scholar 

  11. S. M. Aksenov, V. S. Mironov, E. Yu. Borovikova, et al., Solid State Sci. 63, 16 (2017).

    Article  ADS  Google Scholar 

  12. U. Kolitsch and G. Giester, Am. Miner. 85, 1298 (2000).

  13. X. Rocquefelte, K. Schwarz, and P. Blaha, Sci. Rep. 2, 759 (2012).

    Article  ADS  Google Scholar 

  14. G. Tunell, E. Posnjak, and C. J. Ksanda, J. Wash. Acad. Sci. 23, 195 (1933).

    Google Scholar 

  15. G. A. Bain and J. F. Berry, J. Chem. Educ. 85, 532 (2008).

    Article  Google Scholar 

  16. D. C. Johnston, R. K. Kremer, M. Troyer, et al., Phys. Rev. B 61, 9558 (2000).

    Article  ADS  Google Scholar 

  17. R. J. Goetsch, V. K. Anand, A. Pandey, and D. C. Johnston, Phys. Rev. B 85, 054517 (2012).

  18. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003).

    Book  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  20. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  21. G. Kresse and J. Furthmüller, Phys. Rev. 54, 11169 (1996).

    Article  Google Scholar 

  22. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467(R) (1995).

  23. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  24. H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and X. G. Gong, Phys. Rev. B 84, 224429 (2011).

  25. G. Mathew, S. L. L. Silva, A. Jain, et al., Phys. Rev. Res. 2, 043329 (2020).

  26. M. Wiesniak, V. Vedral, and C. Brukner, New J. Phys. 7, 258 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray experiments were conducted using the facility of the Collective Use Center at the Federal Research Center “Crystallography and Photonics,” Russian Academy of sciences.

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-00023) and the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Shvanskaya or A. N. Vasil’ev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvanskaya, L.V., Bushneva, T.D., Ivanova, A.G. et al. Low-Dimensional Magnetism in Namibite Cu(BiO)2VO4OH. J. Exp. Theor. Phys. 137, 520–525 (2023). https://doi.org/10.1134/S1063776123100114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100114

Navigation