Skip to main content
Log in

Jahn–Teller Ordering Dynamics in the Paraelectric BiMn7O12 Phase: 57Fe Probe Mössbauer Diagnostics

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electrical hyperfine interactions of the 57Fe probe nuclei stabilized in the structure of the BiMn7O12 manganite are studied by Mössbauer spectroscopy. Mössbauer spectra are measured in the para-electric temperature range, which includes the structural phase transitions I2/mIm\(\bar {3}\) (T1 ≈ 600 K) and Im ↔ I2/m (T2 ≈ 450 K). The calculation of the parameters of the electric field gradient tensor with allowance for the dipole contributions of Bi3+ cations in the range of the first phase transition allowed us to confirm a random orientation of the dipole moments pBi in the cubic phase of the manganite (Im\(\bar {3}\)). Based on an analysis of the Mössbauer spectra recorded at T2 < T < T1, we considered various scenarios for the manifestation of the dynamic Jahn–Teller effect, which leads to the “melting” of the orbital order in the manganese sublattice, in terms of a two-level relaxation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. F. Mezzandri, G. Calestani, M. Calicchio, et al., Phys. Rev. B 79, 100106 (2009).

  2. A. Gauzzi, G. Rousse, F. Mezzandri, et al., J. Appl. Phys. 113, 043920 (2013).

  3. A. A. Belik, Y. Matsushita, Y. Kumagai, et al., Inorg. Chem. 56, 12272 (2017).

    Article  Google Scholar 

  4. W. A. Slawinski, H. Okamoto, and H. Fjellwag, Acta Crystallogr. 73, 313 (2017).

    Google Scholar 

  5. A. A. Belik, Y. Matsushita, and D. D. Khalyavin, Angew. Chem. Int. Ed. 56, 10423 (2017).

    Article  Google Scholar 

  6. D. D. Khalyavin, R. D. Johnson, F. Orlandi, et al., Science (Washington, DC, U. S.) 369, 680 (2020).

    Article  ADS  Google Scholar 

  7. D. I. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  8. S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).

    Article  ADS  Google Scholar 

  9. A. V. Sobolev, V. S. Rusakov, A. M. Gapochka, et al., Phys. Rev. B 101, 224409 (2020).

  10. A. V. Sobolev, A. V. Bokov, W. Yi, A. A. Belik, I. A. Presniakov and I. S. Glazkova, J. Exp. Theor. Phys. 129, 896 (2019).

    Article  ADS  Google Scholar 

  11. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  12. P. G. Radaelli, D. E. Cox, M. Marezio, et al., Phys. Rev. B 55, 3015 (1997).

    Article  ADS  Google Scholar 

  13. R. D. Johnson, D. D. Khalyavin, P. Manuel, et al., Phys. Rev. B 93, 180403 (2016).

  14. R. D. Johnson, D. D. Khalyavin, P. Manuel, et al., Phys. Rev. B 96, 054448 (2017).

  15. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  16. J. G. Park, M. D. Le, J. Jeong, et al., J. Phys.: Condens. Matter 26, 433202 (2014).

  17. D. Khomskii, Physics 2, 20 (2009).

    Article  Google Scholar 

  18. E. Jo, S. Park, J. Lee, et al., Sci. Rep. 7, 2178 (2017).

    Article  ADS  Google Scholar 

  19. M. Prinz-Zwick, T. Gimpel, K. Geirhos, et al., Phys. Rev. B 105, 014301 (2022).

  20. A. V. Zalessky, A. A. Frolov, T. A. Khimich, et al., Europhys. Lett. 50, 547 (2000).

    Article  ADS  Google Scholar 

  21. M. Pregelj, P. Jeglič, A. Zorko, et al., Phys. Rev. B 87, 144408 (2013).

  22. A. M. L. Lopes, G. N. P. Oliveira, and T. M. Mendoncą, Phys. Rev. B 84, 014434 (2011).

  23. A. A. Belik, Y. S. Glazkova, Y. Katsuya, et al., J. Phys. Chem. C 120, 8278 (2016).

    Article  Google Scholar 

  24. A. Sobolev, V. Rusakov, A. Moskvin, et al., J. Phys.: Condens. Matter 29, 275803 (2017).

  25. V. I. Nitsenko, A. V. Sobolev, A. A. Belik, Ya. S. Glazkova, and I. A. Presnyakov, J. Exp. Theor. Phys. 136, 620 (2023).

    Article  ADS  Google Scholar 

  26. F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000).

    Article  Google Scholar 

  27. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  28. Ya. S. Glazkova, A. A. Belik, A. V. Sobolev, and I. A. Presniakov, Inorg. Mater. 52, 499 (2016).

    Article  Google Scholar 

  29. Y. S. Glazkova, N. Terada, Y. Matsushita, et al., Inorg. Chem. 54, 9081 (2015).

    Article  Google Scholar 

  30. D. P. E. Dickson and F. J. Berry, Mössbauer Spectroscopy (Cambridge Univ. Press, Cambridge, 1986).

    Book  Google Scholar 

  31. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).

    Google Scholar 

  32. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998).

    Book  MATH  Google Scholar 

  33. S. Hussain, S. K. Hasanain, G. H. Jaffari, et al., J. Am. Ceram. Soc. 96, 3141 (2013).

    Article  Google Scholar 

  34. T. Lottermoser and D. Meier, Phys. Sci. Rev. 6, 20200032 (2021).

  35. Z. C. Xia, L. X. Xiao, C. H. Fang, et al., J. Magn. Magn. Mater. 297, 1 (2006).

    Article  ADS  Google Scholar 

  36. M. D. Kaplan and B. G. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals (Springer, New York, 1995).

    Book  Google Scholar 

  37. J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, et al., Inorg. Chem. 39, 917 (2000).

    Article  Google Scholar 

  38. M. Tachibana, T. Shimoyama, H. Kawaji, et al., Phys. Rev. B 75, 144425 (2007).

  39. T. Chatterjee, Indian J. Phys. 80, 665 (2006).

    Google Scholar 

  40. L. Martín-Carrón and A. de Andrés, Eur. Phys. J. B 22, 11 (2001).

    Article  ADS  Google Scholar 

  41. A. Trokiner, S. Verkhovskii, A. Gerashenko, et al., Phys. Rev. B 87, 125142 (2013).

  42. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer, et al., Phys. Rev. B 90, 054424 (2014).

  43. J. Rodríguez-Carvajal, M. Hennion, F. Moussa, et al., Phys. Rev. B 57, R3189(R) (1998).

  44. F. Ham, J. Phys. Colloq. 35, C6-121 (1974).

    Article  Google Scholar 

  45. M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).

    Article  ADS  Google Scholar 

  46. M. Capone, D. Feinberg, and M. Grilli, AIP Conf. Proc. 554, 395 (2001).

    Article  ADS  Google Scholar 

  47. I. Bersuker, The Jahn-Teller Effect (Cambridge Univ.Press, Cambridge, 2006).

    Book  Google Scholar 

  48. H. Okamoto, M. Karppinen, H. Yamauchi, et al., Solid State Sci. 11, 1211 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-10034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Glazkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.V., Nitsenko, V.I., Belik, A.A. et al. Jahn–Teller Ordering Dynamics in the Paraelectric BiMn7O12 Phase: 57Fe Probe Mössbauer Diagnostics. J. Exp. Theor. Phys. 137, 404–412 (2023). https://doi.org/10.1134/S1063776123090145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090145

Navigation