Skip to main content
Log in

Hysteresis of Magnetization and Electric Polarization in Magnetic Nanostructures with Dzyaloshinskii–Moriya Interaction

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of the Dzyaloshinskii–Moriya interaction (DMI) on the formation of polar structures in nanoscale magnetoelectric films has been studied. The sequence of micromagnetic structures of different topology at magnetization and remagnetization of a film of limited size in a magnetic field oriented along the normal to the film surface is investigated. It is shown that the formation of polar structures is related to the existence of magnetic structures. Specific features of polar states in dependence of the DMI type and the interface symmetry is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. Manipatruni, D. N. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Nature (London, U.K.) 565, 7737 (2019).

    Article  Google Scholar 

  2. G. Tian, W. Yang, D. Chen, G. Fan, Z. Hou, M. Alexe, and X. Gao, Nat. Sci. Rev. 6, 684 (2019).

    Article  Google Scholar 

  3. M. Y. Liu, T. L Sun, X. L. Zhu, X. Q. Liu, H. Tian, and X. M. Chen, J. Am. Ceram. Soc. 104, 6393 (2021).

    Article  Google Scholar 

  4. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 7 (2017).

    Article  Google Scholar 

  5. L. Caretta, E. Rosenberg, F. Buttner, T. Fakhrul, P. Gargiani, M. Valvidares, Z. Chen, P. Reddy, D. A. Muller, and C. Ross, Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  6. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).

  7. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross, and G. Beach, Nat. Nanotech. 14, 561 (2019).

    Article  ADS  Google Scholar 

  8. D. H. Kim, M. Haruta, H. W. Ko, G. Go, H. J. Park, T. Nishimura, D. Y. Kim, T. Okuno, and Y. Hirata, Nat. Mater. 18, 685 (2019).

    Article  ADS  Google Scholar 

  9. M. Heide, G. Bihlmayer, and S. Blügel, Phys. Rev. B 78, 140403 (2008).

  10. A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, Nature (London, U.K.) 539, 509 (2016).

    Article  Google Scholar 

  11. A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty, and A. Ognev, Appl. Phys. Lett. 112, 19 (2018).

    Article  Google Scholar 

  12. L. Wang, Q. Feng, Y. Kim, et al., Nat. Mater. 17, 1087 (2018).

    Article  ADS  Google Scholar 

  13. J. Lu, L. Si, Q. Zhang, C. Tian, et al., Adv. Mater. 33, 2102525 (2021).

  14. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Bönini, Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  ADS  Google Scholar 

  15. O. Cortes, M. Beg, and V. Nehruji, New J. Phys. 20, 113015 (2018).

  16. I. Dzyaloshinsky, J. Phys. Chem. Sol. 4, 241 (1958).

    Article  ADS  Google Scholar 

  17. A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 52, 845 (2009).

    Article  ADS  Google Scholar 

  18. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

  19. M. J. Donahue, OOMMF User’s Guide (US Dep. of Commerce, Natl. Inst. Stand. Technol., 1999).

    Book  Google Scholar 

  20. Z. V. Gareeva, N. V. Shulga, and R. A. Doroshenko, Eur. Phys. J. Plus 137, 454 (2022).

    Article  Google Scholar 

  21. K. L. Meltov and K. Y. Guslienko, J. Magn. Magn. Mater. 242, 1015 (2002).

    ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-52-80024, and performed within the state assignment for the research laboratories (order MN-8/1356 on September 20, 2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. V. Gareeva or N. V. Shul’ga.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

ADDITIONAL INFORMATION

This work was presented at the VIII Eurasian Symposium “Trends in Magnetism” (EASTMAG-2022), Kazan, August 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gareeva, Z.V., Shul’ga, N.V., Sharafullin, I.F. et al. Hysteresis of Magnetization and Electric Polarization in Magnetic Nanostructures with Dzyaloshinskii–Moriya Interaction. J. Exp. Theor. Phys. 136, 53–58 (2023). https://doi.org/10.1134/S1063776123010016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123010016

Navigation