Skip to main content
Log in

Dynamic and Static Properties of a Non-Heisenberg Ferrimagnet with Single-Ion Easy-Axis Anisotropy

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the influence of the single-ion easy-axis anisotropy on the phase states and elementary excitation spectra of a ferrimagnet with sublattices with S = 1 and σ = 1/2 and a non-Heisenberg (bilinear and biquadratic in spins) exchange interaction for the sublattice with S = 1. It is shown that for various relations between material parameters of the system, a phase with vector order parameters (ferrimagnetic phase) and the phase characterized by the vector as well as tensor order parameters (quadrupole-ferrimagnetic phase) can be realized. It is shown that the inclusion of single-ion anisotropy changes the phase transition type as compared to that in an isotropic non-Heisenberg ferrimagnet. We have constructed the phase diagram and determined the condition for the compensation of sublattice spins, as well as the behavior of the elementary excitation spectra near the phase-transition line and near the spin-compensation line. In the vicinity of the spin-compensation line, the magnon spectra are “antiferromagnetically similar.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/https://doi.org/10.1109/TMAG.2008.2009935

  2. S. D. Bader and S. S. P. Parkin, Ann. Rev. Condens. Matter Phys. 1, 71 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104123

    Article  ADS  Google Scholar 

  3. V. V. Kruglyak, S. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010). https://doi.org/10.1088/0022-3727/43/26/260301

  4. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347

    Article  Google Scholar 

  5. H. V. Gomonay and V. M. Loktev, Low Temp. Phys. 40, 17 (2014). https://doi.org/10.1063/1.4862467

    Article  ADS  Google Scholar 

  6. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevMod-Phys.90.015005

  7. M. B. Jungfleisch, W. Zhang, and A. Hoffmann, Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008

    Article  ADS  Google Scholar 

  8. V. G. Bar’yakhtar, B. A. Ivanov, and M. V. Chetkin, Sov. Phys. Usp. 28, 563 (1985).

    Article  ADS  Google Scholar 

  9. A. Ivanov and D. D. Sheka, Phys. Rev. Lett. 72, 404 (1994).

    Article  ADS  Google Scholar 

  10. E. A. Galkina and B. A. Ivanov, JETP Lett. 61, 495 (1995).

    Google Scholar 

  11. H. V. Gomonay and V. M. Loktev, Phys. Rev. B 81, 144427 (2010). https://doi.org/10.1103/Phys-RevB.81.144427

  12. O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Bazaliy, and O. Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008). https://doi.org/10.1103/PhysRevLett.100.127204

  13. E. G. Galkina, B. A. Ivanov, S. Savel’ev, and F. Nori, Phys. Rev. B 77, 134425 (2008). https://doi.org/10.1103/PhysRevB.77.134425

  14. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. Lett. 117, 017202 (2016). https://doi.org/10.1103/PhysRevLett.117.017202

  15. E. G. Galkina and B. A. Ivanov, Low Temp. Phys. 44, 618 (2018). https://doi.org/10.1063/1.5041427

    Article  ADS  Google Scholar 

  16. R. Cheng, D. Xiao, and A. Brataas, Phys. Rev. Lett. 116, 207603 (2016). https://doi.org/10.1103/Phys-RevLett.116.207603

  17. R. Khymyn, I. Lisenkov, V. Tyberkevych, B. A. Ivanov, and A. Slavin, Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705

    Article  ADS  Google Scholar 

  18. O. R. Sulymenko, O. V. Prokopenko, V. S. Tiberkevich, A. N. Slavin, B. A. Ivanov, and R. Khymyn, Phys. Rev. Appl. 8, 064007 (2017). https://doi.org/10.1103/PhysRevApplied.8.064007

  19. B. A. Ivanov and A. L. Sukstanski, Sov. Phys. JETP 57, 214 (1983).

    ADS  Google Scholar 

  20. K. J. Kim, S. K. Kim, Y. Hirata, Se-Hyeok Oh, T. Tono, D. H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K.-J. Lee, and T. Ono, Nat. Mater. 16, 1187 (2017). https://doi.org/10.1038/nmat4990

    Article  ADS  Google Scholar 

  21. E. G. Galkina, K. E. Zaspel, B. A. Ivanov, N. E. Kulagin, and L. M. Lerman, JETP Lett. 110, 481 (2019). https://doi.org/10.1134/S002136401919007X

    Article  ADS  Google Scholar 

  22. S. K. Kim and Y. Tserkovnyak, Appl. Phys. Lett. 111, 032401 (2017). https://doi.org/10.1063/1.4985577

  23. C. E. Zaspel, E. G. Galkina, and B. A. Ivanov, Phys. Rev. Appl. 12, 044019 (2019). https://doi.org/10.1103/PhysRevApplied.12.044019

  24. I. Lisenkov, R. Khymyn, J. Åkerman, N. X. Sun, and B. A. Ivanov, Phys. Rev. B 100, 100409(R) (2019). https://doi.org/10.1103/PhysRevB.100.100409

  25. I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, and A. V. Kimel, Nat. London (U.K.) 472, 205 (2011). https://doi.org/10.1038/nature09901

    Article  ADS  Google Scholar 

  26. T. A. Ostler, J. Barker, R. F. L. Evans, R. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. V. Afanasiev, B. A. Ivanov, et al., Nat. Commun. 3, 666 (2012). https://doi.org/10.1038/ncomms1666

    Article  ADS  Google Scholar 

  27. J. H. Mentink, J. Hellsvik, D. V. Afanasiev, B. A. Ivanov, A. Kirilyuk, A. V. Kimel, O. Eriksson, M. I. Katsnelson, and Th. Rasing, Phys. Rev. Lett. 108, 057202 (2012). https://doi.org/10.1103/PhysRevLett.108.057202

  28. V. G. Bar’yakhtar, V. I. Butrim, and B. A. Ivanov, JETP Lett. 98, 289 (2013). https://doi.org/10.1134/S0021364013180057

    Article  ADS  Google Scholar 

  29. B. A. Ivanov, Low Temp. Phys. 45, 935 (2019). https://doi.org/10.1063/1.5121265

    Article  ADS  Google Scholar 

  30. Yu. A. Fridman and O. A. Kosmachev, Phys. Solid State 51, 1167 (2009). https://doi.org/10.1134/S1063783409060146

    Article  ADS  Google Scholar 

  31. E. L. Nagaev, Sov. Phys. Usp. 25, 31 (1982).

    Article  ADS  Google Scholar 

  32. V. M. Loktev and V. S. Ostrovskii, Low Temp. Phys. 20, 775 (1994).

    ADS  Google Scholar 

  33. T. Moriya, Phys. Rev. 117, 635 (1960).

    Article  ADS  Google Scholar 

  34. Yu. N. Mitsay, Yu. A. Fridman, D. V. Spirin, and M. S. Kochmanski, Acta Phys. Polon. 97, 355 (2000). https://doi.org/10.12693/APhysPolA.97.355

    Article  ADS  Google Scholar 

  35. Yu. A. Fridman, and O. A. Kosmachev, J. Magn. Magn. Mater. 236, 272 (2001). https://doi.org/10.1016/S0304-8853(01)00464-4

    Article  ADS  Google Scholar 

  36. E. G. Galkina, V. I. Butrim, Yu. A. Fridman, B. A. Ivanov, and F. Nori, Phys. Rev. B 88, 144420 (2013). https://doi.org/10.1103/Phys-RevB.88.144420

  37. E. G. Galkina, B. A. Ivanov, and V. I. Butrim, Low Temp. Phys. 40, 635 (2014). https://doi.org/10.1063/1.4890989

    Article  ADS  Google Scholar 

  38. A. F. Andreev and I. A. Grishchuk, Sov. Phys. JETP 60, 267 (1984).

    ADS  Google Scholar 

  39. E. L. Nagaev, Magnetics with Complex Exchange Interactions (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  40. B. A. Ivanov and A. K. Kolezhuk, Phys. Rev. B 68, 052401 (2003). https://doi.org/10.1103/Phys-RevB.68.052401

  41. V. G. Bar’yakhtar, V. I. Butrim, A. K. Kolezhuk, and B. A. Ivanov, Phys. Rev. B 87, 224407 (2013).

  42. E. G. Galkina, B. A. Ivanov, O. A. Kosmachev, and Yu. A. Fridman, Low Temp. Phys. 41, 382 (2015). https://doi.org/10.1063/1.4921470

    Article  ADS  Google Scholar 

  43. Yu. A. Fridman, O. A. Kosmachev, and Ph. N. Klevets, J. Magn. Magn. Mater. 325, 125 (2013). https://doi.org/10.1016/j.jmmm.2012.08.027

    Article  ADS  Google Scholar 

  44. A. Läuchli, G. Schmid, and S. Trebst, Phys. Rev. B 74, 144426 (2006). https://doi.org/10.1103/Phys-RevB.74.144426

  45. A. V. Krivtsova, Ya. Yu. Matyunina, E. A. Polyanskaya, O. A. Kosmachev, and Yu. A. Fridman, J. Magn. Magn. Mater. 513, 167178 (2020). https://doi.org/10.1016/j.jmmm.2020.167178

  46. A. V. Krivtsova, Ya. Yu. Matyunina, and Yu. A. Fridman, J. Exp. Theor. Phys. 131, 302 (2020). https://doi.org/10.1134/S1063776120060059

    Article  ADS  Google Scholar 

  47. N. Papanikolaou, Nucl. Phys. B 305, 367 (1988).

    Article  ADS  Google Scholar 

  48. A. V. Chubukov, J. Phys.: Condens. Matter 2, 1593 (1990).

    ADS  Google Scholar 

  49. K. Stevens, Proc. Phys. Soc. A 65, 209 (1952).

    Article  ADS  Google Scholar 

  50. R. O. Zaitsev, Sov. Phys. JETP 41, 100 (1975).

    ADS  Google Scholar 

  51. V. V. Val’kov, Sov. J. Theor. Math. Phys. 76, 766 (1988).

    Article  Google Scholar 

  52. Yu. A. Fridman, O. A. Kosmachev, and Ph. N. Klevets, J. Magn. Magn. Mater. 320, 435 (2008). https://doi.org/10.1016/j.jmmm.2007.07.001

    Article  ADS  Google Scholar 

  53. Yu. N. Mitsai and Yu. A. Fridman, Sov. J. Theor. Math. Phys. 81, 1194 (1989).

    Article  Google Scholar 

  54. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in Strongly Correlated Systems (Sib. Otdel. RAN, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  55. V. V. Val’kov, T. A. Val’kova, and S. G. Ovchinnikov, Sov. Phys. JETP 61, 323 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fridman.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmachev, O.A., Matyunina, Y.Y. & Fridman, Y.A. Dynamic and Static Properties of a Non-Heisenberg Ferrimagnet with Single-Ion Easy-Axis Anisotropy. J. Exp. Theor. Phys. 135, 354–363 (2022). https://doi.org/10.1134/S1063776122090059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090059

Navigation