Skip to main content
Log in

Shock-Wave Pressure Transfer to a Solid Target with Porous Absorber of High-Power Laser Pulse

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Results of experiments aimed at amplification of the pressure of laser-induced shock wave on the passage from low- to high-density target material via vacuum gap are presented. During the action of nanosecond laser pulse of terawatt power on plane composite targets comprising a layer of laser radiation absorber of low-density (0.01–0.025 g/cm3) spaced by vacuum gap from a layer of aluminum, the shock-wave velocity in aluminum reached 25–29 km/s and a pressure jump at the aluminum layer boundary was 1.2–1.5 times as large as that observed in experiments on the cumulative transition of laser-induced shock wave into a solid. The obtained experimental data are compared to results of the numerical calculations performed using hydrodynamic programs in which the shock-wave generation and propagation was modeled with allowance for the interaction of laser pulses with partly homogenized plasma of the porous material. Based on the results of experiments, numerical calculations, and their theoretical analysis, the efficiency of using low-density porous media in the targets intended for their equation of state investigations and inertial confinement fusion ignition is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. G. Garanin, Phys. Usp. 54, 415 (2011).

    Article  ADS  Google Scholar 

  2. R. S. Craxton, K. S. Anderson, T. R. Boehly, et al., Phys. Plasmas 22, 110501 (2015).

  3. J. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  4. R. Cauble, D. W. Phillion, T. J. Hoover, et al., Phys. Rev. Lett. 70, 2102 (1993).

    Article  ADS  Google Scholar 

  5. M. Karasik, J. L. Weaver, Y. Aglitskiy, et al., Phys. Plasmas 17, 056317 (2010).

  6. T. Watari, T. Sakaiya, H. Azechi, et al., J. Phys.: Conf. Ser. 112, 022065 (2008).

  7. M. Murakami, H. Nagatomo, T. Johzaki, et al., Nucl. Fusion 54, 054007 (2014).

  8. S. Yu. Gus’kov, JETP Lett. 100, 71 (2014).

    Article  ADS  Google Scholar 

  9. S. Yu. Gus’kov, P. A. Kuchugov, and G. A. Vergunova, Matter Radiat. Extrem. 6, 020301 (2021).

  10. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008; Academic, New York, 1966, 1967).

  11. S. Yu. Gus’kov, N. V. Zmitrienko, and V. B. Rozanov, Zh. Eksp. Teor. Fiz. 108, 296 (1995).

    Google Scholar 

  12. A. S. Moore, N. B. Meezan, C. A. Thomas, et al., Phys. Plasmas 27, 082706 (2020).

  13. A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., Laser Part. Beams 17, 415 (1999).

    Article  ADS  Google Scholar 

  14. Ph. Nicolaï, M. Olazabal-Loume, S. Fujioka, et al., Phys. Plasmas 19, 113105 (2012).

  15. S. Depierreux, C. Labaune, D. Michel, et al., Phys. Rev. Lett. 102, 195005 (2009).

  16. M. Tanabe, H. Nishimura, S. Fujioka, et al., Appl. Phys. Lett. 93, 051505 (2008).

  17. A. Caruso, C. Strangio, S. Yu. Gus’kov, et al., Laser Part. Beams 18, 25 (2000).

    Article  ADS  Google Scholar 

  18. T. Hall, D. Batani, W. Nazarov, et al., Laser Part. Beams 20, 303 (2002).

    Article  ADS  Google Scholar 

  19. S. Yu. Gus’kov, M. Cipriani, R. de Angelis, et al., Plasma Phys. Control. Fusion 57, 125004 (2015).

  20. R. de Angelis, F. Consoli, S. Yu. Gus’kov, et al., Phys. Plasmas 22, 072701 (2015).

  21. A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., J. Exp. Theor. Phys. 84, 272 (1997).

    Article  ADS  Google Scholar 

  22. M. Cipriani, S. Yu. Gus’kov, R. de Angelis, et al., Phys. Plasmas 25, 092704 (2018).

  23. J. D. Colvin, H. Matsukuma, K. C. Brown, et al., Phys. Plasmas 25, 032702 (2018).

  24. J. Velechovsky, J. Limpouch, R. Liska, and V. Tikhonchuk, Plasma Phys. Control. Fusion 58, 095004 (2016).

  25. S. Yu. Gus’kov, J. Limpouch, Ph. Nicolaï, and V. T. Tikhonchuk, Phys. Plasmas 18, 103114 (2011).

  26. A. Benuzzi, M. Koenig, B. Faral, et al., Phys. Plasmas 5, 2410 (1998).

    Article  ADS  Google Scholar 

  27. M. Temporal, S. Atzeni, D. Batani, et al., Eur. Phys. J. D 12, 509 (2000).

    Article  ADS  Google Scholar 

  28. D. Batani, A. Balducci, W. Nazarov, et al., Phys. Rev. E 63, 046410 (2001).

  29. S. G. Garanin, A. I. Zaretskii, R. I. Il’kaev, et al., Quantum Electron. 35, 299 (2005).

    Article  ADS  Google Scholar 

  30. D. S. Kornienko, A. G. Kravchenko, D. N. Litvin, V. V. Mis’ko, A. N. Rukavishnikov, A. V. Senik, K. V. Starodubtsev, V. M. Tarakanov, and A. E. Chaunin, Instrum. Exp. Tech. 57, 165 (2014).

    Article  Google Scholar 

  31. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. At. Nauki Tekh., Ser.: Metod. Progr. Chisl. Reshen. Zadach At. Fiz., No. 2, 34 (1983).

  32. S. Yu. Gus’kov, P. A. Kuchugov, R. A. Yakhin, et al., Plasma Phys. Control. Fusion 61, 105014 (2019).

  33. S. Yu. Gus’kov and V. B. Rozanov, Quantum Electron. 27, 696 (1997).

    Article  ADS  Google Scholar 

  34. S. Yu. Gus’kov and J. Russ, Laser Res. 31, 574 (2010).

    Article  Google Scholar 

  35. M. Cipriani, S. Yu. Gus’kov, R. de Angelis, et al., Laser Part. Beams 36, 121 (2018).

    Article  ADS  Google Scholar 

  36. Yu. V. Afanasiev and S. Yu. Gus’kov, in Nuclear Fusion by Inertial Confinement. A Comprehensive Treatise, Ed. by G. Velarde, Y. Ronen, and J. M. Martinez-Val (CRC Press, Boca Raton, 1992), Chap. 4.

    Google Scholar 

  37. S. Yu. Gus’kov, H. Azechi, N. N. Demchenko, et al., Plasma Phys. Control. Fusion 51, 095001 (2009).

  38. S. Yu. Gus’kov, S. Borodzyuk, M. Kalal, et al., Quantum Electron. 34, 989 (2004).

    Article  ADS  Google Scholar 

  39. Yu. V. Afanas’ev, E. G. Gamalii, O. N. Krokhin, et al., Prikl. Mat. Mekh. 39, 451 (1975).

    Google Scholar 

  40. V. B. Rozanov, C. P. Verdon, M. Decroisette, et al., in Energy from Inertial Fusion, Ed. by W. J. Hogan (IAEA, Vienna, 1995), p. 21.

    Google Scholar 

  41. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Yakhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, I.A., Bel’kov, S.A., Bondarenko, S.V. et al. Shock-Wave Pressure Transfer to a Solid Target with Porous Absorber of High-Power Laser Pulse. J. Exp. Theor. Phys. 134, 340–349 (2022). https://doi.org/10.1134/S106377612203013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612203013X

Navigation