Skip to main content
Log in

High-Precision Studies of the Compressibility and Relaxation of g-As2S3 Glasses at High Hydrostatic Pressures up to 8.6 GPa

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The high-precision volume measurements of the g-As2S3 glass have been performed at high hydrostatic pressures up to 8.6 GPa, and room temperature. The glass behaves elastically during compression only at pressures up to 1.5 GPa; at higher pressures, a smooth transformation and inelastic density relaxation (logarithmic in time) take place. In the initial segment, the bulk modulus is B = 13.5 ± 0.15 GPa and its pressure derivative is dB/dP = 6.2 ± 0.2. When pressure increases further, the relaxation rate passes through a maximum at 4 GPa, which is accompanied by a bulk modulus plateau, and then decreases and remains noticeable up to the maximum pressure. When pressure decreases, inelastic behavior and the reverse transformation are observed at pressures below 4 GPa. After pressure release, the g-As2S3 glasses have a residual densification of about 3% and their optical properties differ substantially from the initial ones. The glass density relaxes to a quasi-equilibrium value in several months under normal conditions. The kinetics of the Raman spectrum and the optical absorption edge of the glasses during relaxation is studied under normal pressure. The data on compressibility of glasses and comparative Raman studies of initial and compacted glasses show that at pressures up to 9 GPa, there is a strong increase in chemical disorder in the glass, while there is no significant change in the coordination number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. Schultz-Sellack, Ann. Phys. Chem. 139, 182 (1870).

    Article  ADS  Google Scholar 

  2. F. V. Glaze et al., J. Res. Natl. Bureau Stand. 59, 83 (1957).

    Article  Google Scholar 

  3. A. Feltz, Amorphe und Glasartige Anorganische Festktsrper (Wiley-VCH, Akademie, Berlin, 1983).

    Google Scholar 

  4. O. Podrazky et al., Proc. SPIE 9450, B1 (2015).

    Google Scholar 

  5. S. I. Simdyankin, S. R. Elliott, Z. Hajnal, T. A. Niehaus, and Th. Frauenheim, Phys. Rev. B 69, 144202 (2004).

    Article  ADS  Google Scholar 

  6. V. V. Struzhkin, A. F. Goncharov, R. Caracas, et al., Phys. Rev. B 77, 165133 (2008).

    Article  ADS  Google Scholar 

  7. O. Uemura, Y. Sagara, D. Muno, et al., J. Non-Cryst. Solids 30, 155 (1978).

    Article  ADS  Google Scholar 

  8. W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

    Article  Google Scholar 

  9. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, Phys. Rev. B 95, 054205 (2017).

    Article  ADS  Google Scholar 

  10. R. Zallen, High Press. Res. 24, 117 (2004).

    Article  ADS  Google Scholar 

  11. D. Gerlich, E. Litov, and O. L. Andersen, Phys. Rev. B 20, 2529 (1979).

    Article  ADS  Google Scholar 

  12. N. B. Bolotina, V. V. Brazhkin, T. I. Dyuzheva, Y. Katayama, L. F. Kulikova, L. M. Lityagina, and N. A. Nikolaev, JETP Lett. 98, 539 (2013).

    Article  ADS  Google Scholar 

  13. K. Liu et al., Materials 12, 784 (2019).

    Article  ADS  Google Scholar 

  14. G. Parthasarathy and E. S. R. Gopal, Bull. Mater. Sci. 7, 271 (1985).

    Article  Google Scholar 

  15. B. A. Weinstein, R. Zallen, and M. L. Slade, J. Non-Cryst. Solids 3536, 1255 (1980).

  16. M. Vaccari et al., J. Chem. Phys. 131, 224502 (2009).

    Article  ADS  Google Scholar 

  17. F. Shimojo, K. Hoshino, and Y. Zempo, J. Non-Cryst. Solids 312314, 388 (2002).

  18. K. S. Andrikopoulos et al., J. Non-Cryst. Solids 352, 4594 (2006).

    Article  ADS  Google Scholar 

  19. V. V. Brazhkin, Y. Katayama, M. V. Kondrin, et al., Phys. Rev. Lett. 100, 145701 (2008).

    Article  ADS  Google Scholar 

  20. V. V. Brazhkin, Y. Katayama, M. V. Kondrin, et al., Phys. Rev. B 82, 146202 (2010).

    Article  Google Scholar 

  21. V. V. Brazhkin and O. B. Tsiok, Phys. Rev. B 96, 134111 (2017).

    Article  ADS  Google Scholar 

  22. O. B. Tsiok and V. V. Brazhkin, J. Exp. Theor. Phys. 127, 1118 (2018).

    Article  ADS  Google Scholar 

  23. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, Phys. Chem. B 120, 358 (2016).

    Article  Google Scholar 

  24. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, J. Exp. Theor. Phys. 123, 308 (2016).

    Article  ADS  Google Scholar 

  25. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, J. Exp. Theor. Phys. 125, 451 (2017).

    Article  ADS  Google Scholar 

  26. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  27. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Article  ADS  Google Scholar 

  28. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).

    Article  ADS  Google Scholar 

  29. V. V. Brazhkin, O. B. Tsiok, and Y. Katayama, JETP Lett. 89, 244 (2009).

    Article  ADS  Google Scholar 

  30. G. Lucovsky, Phys. Rev. B 6, 1480 (1971).

    Article  ADS  Google Scholar 

  31. M. Frumar, Z. Polák, and Z. Černošek, J. Non-Cryst. Solids 256257, 105 (1999).

  32. T. L. Cottrell, The Strengths of Chemical Bonds, 2nd ed. (Butterworths, London, 1958).

    Google Scholar 

  33. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press, Ithaca, 1960).

    MATH  Google Scholar 

  34. G. Williams and D. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  Google Scholar 

  35. G. Z. Vinogradova, Glass Formation and Phase Equilibria in Chalcogenide Systems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  36. K. Richardson, T. Cardinal, M. Richardson, A. Schulte, and S. Seal, in Photo-Induced Metastability in Amorphous Semiconductors, Ed. by A. V. Kolobov (Wiley-VCH, Weinheim, 2003), p. 383.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.V. Gulyutin for his help in measuring the glass density.

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00111.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Brazhkin or O. B. Tsiok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazhkin, V.V., Bychkov, E., Tver’yanovich, A.S. et al. High-Precision Studies of the Compressibility and Relaxation of g-As2S3 Glasses at High Hydrostatic Pressures up to 8.6 GPa. J. Exp. Theor. Phys. 130, 571–578 (2020). https://doi.org/10.1134/S1063776120030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030024

Navigation