Skip to main content
Log in

Experimental and Theoretical Analyses of Zinc-Vacancy-Induced Room-Temperature Ferromagnetism in ZnO Films

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Room-temperature ferromagnetism (RTFM) has been observed in RF magnetron sputtered ZnO films with O2 as an auxiliary gas after annealing. The films exhibit hexagonal wurtzite structure and observable ferromagnetism. A maximum of saturation magnetization of 4.75 emu/cm3 is obtained. The zinc vacancies are believed as the RTFM origin, and oxygen vacancies are not an incentive of magnetization of the ZnO films. Theoretical study based on first principles calculation is performed for better understanding of the RTFM in substance. The intrinsic physical mechanism of regulating the ferromagnetic of the ZnO film is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. Ohno, Science (Washington, DC, U. S.) 281 (5379), 951 (1998).

    Article  ADS  Google Scholar 

  2. H. O. T. Dietl, F. Matsukura, J. Cibert, D. Ferr, Science (Washington, DC, U. S.) 287 (5455), 1019 (2000).

    Article  ADS  Google Scholar 

  3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molna, M. L. Roukes, and D. M. Treger, Science (Washington, DC, U. S.) 294 (5546), 1488 (2001).

    Article  ADS  Google Scholar 

  4. K. Ando, Science (Washington, DC, U. S.) 312 (5782), 1883 (2006).

    Article  Google Scholar 

  5. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson, and G. A. Gehring, Nat. Mater. 2, 673 (2003).

    Article  ADS  Google Scholar 

  6. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    Article  ADS  Google Scholar 

  7. H.-J. Lee, S.-Y. Jeong, C. R. Cho, and C. H. Park, Appl. Phys. Lett. 81, 4020 (2002).

    Article  ADS  Google Scholar 

  8. K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Nat. Mater. 5, 291 (2006).

    Article  ADS  Google Scholar 

  9. X. Zuo, S.-D. Yoon, A. Yang, W.-H. Duan, C. Vittoria, and V. G. Harris, J. Appl. Phys. 105, 07C508 (2009).

  10. C. Peng, Y. Liang, K. Wang, Y. Zhang, G. Zhao, and Y. Wang, J. Phys. Chem. C 116, 9709 (2012).

    Article  Google Scholar 

  11. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).

    Article  ADS  Google Scholar 

  12. T.-L. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh, and S. C. Yu, Appl. Phys. Lett. 102, 072408 (2013).

    Article  ADS  Google Scholar 

  13. D. Gao, J. Zhang, G. Yang, J. Qi, M. Si, and D. Xue, J. Phys. Chem. C 115, 16405 (2011).

    Article  Google Scholar 

  14. H. You, J. Yang, J. Y. Zhu, W. F. Xu, and X. D. Tang, Appl. Surf. Sci. 258, 4455 (2012).

    Article  ADS  Google Scholar 

  15. X. Xu, C. Xu, G. Chen, J. Wu, and J. Hu, Europhys. Lett. 101, 27009 (2013).

    Article  ADS  Google Scholar 

  16. H. Ren, G. Xiang, G. Gu, X. Zhang, W. Wang, P. Zhang, B. Wang, and X. Cao, J. Nanomater. 2012, 295358 (2012).

    Google Scholar 

  17. J. F. G. Kresse, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 1396 (1996).

    Article  Google Scholar 

  19. Ü.Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  20. S. K. Mahadeva, J. Fan, A. Biswas, K. S. Sreelatha, L. Belova, and K. V. Rao, Nanomaterials 3, 486 (2013).

    Article  Google Scholar 

  21. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, G. Schütz, E. Goering, B. Baretzky, and P. B. Strauma, JETP Lett. 97, 367 (2013).

    Article  ADS  Google Scholar 

  22. Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).

    Article  ADS  Google Scholar 

  23. H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the financial supports by National Key R&D Program of China (Grant no. 2017YFE0112000), and Shanghai Municipal Science and Technology Major Project (Grant no. 2017SHZDZX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafei Yuan, Chen, K., Liu, C. et al. Experimental and Theoretical Analyses of Zinc-Vacancy-Induced Room-Temperature Ferromagnetism in ZnO Films. J. Exp. Theor. Phys. 129, 241–247 (2019). https://doi.org/10.1134/S1063776119070203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070203

Navigation