Skip to main content
Log in

Quasi-Stable Configurations of Torus Vortex Knots and Links

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of torus vortex configurations Vn, p, q in a superfluid liquid at zero temperature (n is the number of quantum vortices, p is the number of turns of each filament around the symmetry axis of the torus, and q is the number of turns of the filament around its central circle; radii R0 and r0 of the torus at the initial instant are much larger than vortex core width ξ) has been simulated numerically based on the regularized Biot–Savart law. The lifetime of vortex systems till the instant of their substantial deformation has been calculated with a small step in parameter B0 = r0/R0 for various values of parameter Λ = ln(R0/ξ). It turns out that for certain values of n, p, and q, there exist quasi-stability regions in the plane of parameters (B0, Λ), in which the vortices remain almost invariable during dozens and even hundreds of characteristic lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Thomson (Lord Kelvin), Proc. R. Soc. Edinburgh 9, 59 (1875).

    Article  Google Scholar 

  2. D. Kleckner and W. T. M. Irvine, Nat. Phys. 9, 253 (2013).

    Article  Google Scholar 

  3. R. L. Ricca, D. C. Samuels, and C. F. Barenghi, J. Fluid Mech. 391, 29 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Maggioni, S. Alamri, C. F. Barenghi, and R. L. Ricca, Phys. Rev. E 82, 026309 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Velasco Fuentes, Theor. Comput. Fluid Dyn. 24, 189 (2010).

    Article  Google Scholar 

  6. A. Romero Arteaga, Master’s Thesis (CICESE, Ensenada, Mexico, 2011).

    Google Scholar 

  7. O. Velasco Fuentes and A. Romero Arteaga, J. Fluid Mech. 687, 571 (2011).

    Article  ADS  Google Scholar 

  8. D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E 85, 036306 (2012).

    Article  ADS  Google Scholar 

  9. D. Proment, M. Onorato, and C. F. Barenghi, J. Phys.: Conf. Ser. 544, 012022 (2014).

    Google Scholar 

  10. P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).

    Article  ADS  Google Scholar 

  11. D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat. Phys. 12, 650 (2016).

    Article  Google Scholar 

  12. V. P. Ruban, JETP Lett. 107, 307 (2018).

    Article  ADS  Google Scholar 

  13. K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).

    Article  ADS  Google Scholar 

  14. M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62, 11751 (2000).

    Article  ADS  Google Scholar 

  15. A. W. Baggaley and C. F. Barenghi, Phys. Rev. B 83, 134509 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Original Russian Text © V.P. Ruban, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 3, pp. 679–685.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. Quasi-Stable Configurations of Torus Vortex Knots and Links. J. Exp. Theor. Phys. 127, 581–586 (2018). https://doi.org/10.1134/S106377611809008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611809008X

Navigation