Skip to main content
Log in

Transport, Magnetic, and Memristive Properties of a Nanogranular (CoFeB) x (LiNbO y )100–x Composite Material

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The properties of (CoFeB) x (LiNbO y )100–x nanocomposite films with a ferromagnetic alloy content x = 6–48 at % are comprehensively studied. The films are shown to consist of ensembles of CoFe granules 2–4 nm in size, which are strongly elongated (up to 10–15 nm) in the nanocomposite growth direction and are located in an LiNbO y matrix with a high content of Fe2+ and Co2+ magnetic ions (up to 3 × 1022 cm–3). At T ≤ 25 K, a paramagnetic component of the magnetization of nanocomposites is detected along with a ferromagnetic component, and the contribution of the former component is threefold that of the latter. A hysteresis of the magnetization is observed below the percolation threshold up to x ≈ 33 at %, which indicates the appearance of a superferromagnetic order in the nanocomposites. The temperature dependence of the electrical conductivity of the nanocomposites in the range T ≈ 10–200 K on the metallic side of the metal–insulator transition (44 at % < x < 48 at %) is described by a logarithmic law σ(T) ∝ lnT. This law changes into the law of “1/2” at x ≤ 40 at %. The tunneling anomalous Hall effect is strongly suppressed and the longitudinal conductivity turns out to be lower than in a (CoFeB) x (AlO y )100–x composite material by an order of magnitude. The capacitor structures based on (CoFeB) x (LiNbO y )100–x films exhibit resistive switching effects. They are related to (i) the formation of isolated chains of elongated granules and an anomalously strong decrease in the resistance in fields E > 104 V/cm because of the suppression of Coulomb blockage effects and the generation of oxygen vacancies VO and (ii) the injection (or extraction) of VO vacancies (depending on the sign of voltage) into a strongly oxidized layer in the nanocomposites, which is located near an electrode of the structure and controls its resistance. The number of stable resistive switchings exceeds 105 at a resistance ratio Roff/Ron ~ 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

    Article  ADS  Google Scholar 

  2. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano-and Micro-Heterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  3. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).

    Book  Google Scholar 

  4. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).

    Google Scholar 

  5. C. J. Adkins, in Metal-Insulator Transitions Revisited, Ed. by P. P. Edwards and C. N. R. Rao (Taylor Francis, London, 1995), p. 191.

  6. M. V. Feigel’man and A. S. Ioselevich, JETP Lett. 81, 277 (2005).

    Article  ADS  Google Scholar 

  7. I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).

    Article  ADS  Google Scholar 

  8. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).

    Article  ADS  Google Scholar 

  9. Yu. O. Mikhailovsky, V. N. Prudnikov, K. Yu. Chernoglazov, et al., Solid St. Phenom. 233–234, 403 (2015).

    Article  Google Scholar 

  10. D. Bartov, A. Segai, M. Karpovski, and A. Gerber, Phys. Rev. B 90, 144423 (2014).

    Article  ADS  Google Scholar 

  11. Yu. O. Mikhailovskii, V. N. Prudnikov, V. V. Ryl’kov, K. Yu. Chernoglazov, A. V. Sitnikov, Yu. E. Kalinin, and A. B. Granovskii, Phys. Solid State 58, 444 (2016).

    Article  ADS  Google Scholar 

  12. A. B. Pakhomov and X. Yan, Solid St. Comm. 99, 139 (1996).

    Article  ADS  Google Scholar 

  13. A. Milner, A. Gerber, B. Groisman, et al., Phys. Rev. Lett. 76, 475 (1996).

    Article  ADS  Google Scholar 

  14. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V.A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

    Article  ADS  Google Scholar 

  15. A. V. Vedyayev, N. V. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).

    Article  ADS  Google Scholar 

  16. K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).

    Google Scholar 

  17. O. G. Udalov and I. S. Beloborodov, Phys. Rev. B 95, 045427 (2017)

    Article  ADS  Google Scholar 

  18. O. G. Udalov and I. S. Beloborodov, J. Phys.: Condens. Matter 29, 155801 (2017).

    ADS  Google Scholar 

  19. S. Bedanta, T. Eimuller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).

    Article  ADS  Google Scholar 

  20. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Ed. by D. Ielmini and R. Waser (Wiley-VCH, Weinheim, 2016).

    Google Scholar 

  21. R. A. de Souza, V. Metlenko, D. Park, and T. E. Weirich, Phys. Rev. B 85, 174109 (2012).

    Article  ADS  Google Scholar 

  22. D. Cawley, J. W. Halloran, and A. R. Cooper, J. Am. Ceram. Soc. 74, 2086 (1991); doi 10.1111/j.1151-2916.1991.tb08264.x

    Article  Google Scholar 

  23. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Nature (London, U.K.) 521, 61 (2015).

    Article  ADS  Google Scholar 

  24. M. Prezioso, F. M. Bayat, B. Hoskins, K. Likharev, and D. Strukov, Sci. Rep. 6, 21331 (2016). doi 10.1038/srep21331

    Article  ADS  Google Scholar 

  25. A. V. Emelyanov, D. A. Lapkin, V. A. Demin, et al., AIP Adv. 6, 111301 (2016).

    Article  ADS  Google Scholar 

  26. C.-C. Hsieh, A. Roy, Y.-F. Chang, D. Shahrjerdi, and S. K. Banerjee, Appl. Phys. Lett. 109, 223501 (2016).

    Article  ADS  Google Scholar 

  27. C. Yakopcic, S. Wang, W. Wang, E. Shin, J. Boeckl, G. Subramanyam, and T. M. Taha, Neural Comput. Appl. (2017). doi 10.1007/s00521-017-2958-z

    Google Scholar 

  28. X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, H. Zeng, S. Zhou, R. Bottger, X. Ou, T. Mikolajick, W. Zhang, and H. Schmidt, Appl. Phys. Lett. 108, 032904 (2016).

    Article  ADS  Google Scholar 

  29. Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).

    Article  ADS  Google Scholar 

  30. W. C. Ellis and E. S. Greiner, Trans. Am. Soc. Met. 29, 415 (1941).

    Google Scholar 

  31. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Bond-Breaking Energies. Chemical Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  32. A. L. Efros, Physics and Geometry of Disorder: Percolation Theory (Science for Everyone) (Nauka, Moscow, 1982; Mir, Moscow, 1987).

    Google Scholar 

  33. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

    Article  ADS  Google Scholar 

  34. A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).

    Article  ADS  Google Scholar 

  35. B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. A. Sedo-va, N. Negre, M. Goiran, and Dzh. Leotin, JETP Lett. 70, 90 (1999).

    Article  ADS  Google Scholar 

  36. A. Gerber, A. Milner, A. Finkler, M. Karpovski, L. Goldsmith, J. Tuaillon-Combes, O. Boisron, P. Mélinon, and A. Perez, Phys. Rev. B 69, 224403 (2004).

    Article  ADS  Google Scholar 

  37. H. Meier, M. Yu. Kharitonov, and K. B. Efetov, Phys. Rev. B 80, 045122 (2009).

    Article  ADS  Google Scholar 

  38. A. A. Timopheev, I. Bdikin, A. F. Lozenko, O. V. Stognei, A. V. Sitnikov, A. V. Los, and N. A. Sobolev, J. Appl. Phys. 111, 123915 (2012).

    Article  ADS  Google Scholar 

  39. J. V. Kasiuk, J. A. Fedotova, J. Przewoznik, J. Zukrowski, M. Sikora, Cz. Kapusta, A. Grce, and M. Milosavljevic, J. Appl. Phys. 116, 044301 (2014).

    Article  ADS  Google Scholar 

  40. X. Batlle and A. Labarta, J. Phys. D: Appl. Phys. 35, R15 (2002).

    Article  ADS  Google Scholar 

  41. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    MATH  Google Scholar 

  42. S. D. Ha and S. Ramanathan, J. Appl. Phys. 110, 071101 (2011).

    Article  ADS  Google Scholar 

  43. J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).

    Article  ADS  Google Scholar 

  44. J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).

    Article  ADS  Google Scholar 

  45. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  ADS  Google Scholar 

  46. A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nat. Nanotechnol. 11, 67 (2016).

    Article  ADS  Google Scholar 

  47. D. Xu, X. N. Shangguan, S. M. Wang, H. T. Cao, L. Y. Liang, H. L. Zhang, J. H. Gao, W. M. Long, J. R. Wang, and F. Zhuge, AIP Adv. 7, 025102 (2017).

    Article  ADS  Google Scholar 

  48. A. V. Shaposhnikov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Appl. Phys. Lett. 100, 243506 (2012).

    Article  ADS  Google Scholar 

  49. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).

    Article  ADS  Google Scholar 

  50. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Comm. 3, 732 (2012). doi 10.1038/ncomms1737

    Article  ADS  Google Scholar 

  51. J.-Y. Chen, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, and W.-W. Wu, Adv. Mater. 27, 5028 (2015).

    Article  Google Scholar 

  52. M. K. Yang, H. Ju, G.-H. Kim, J.-K. Lee, and H.-C. Ryu, Sci. Rep. 5, 14053 (2015). doi 10.1038/srep14053

    Article  ADS  Google Scholar 

  53. S. E. Savel’ev, F. Marchesoni, and A. M. Bratkovsky, Eur. Phys. J. B 86, 501 (2013).

    Article  ADS  Google Scholar 

  54. S. Tang, F. Tesler, F. G. Marlasca, P. Levy, V. Dobrosavljevic, and M. Rozenberg, Phys. Rev. X 6, 011028 (2016).

    Google Scholar 

  55. B. Hudec, A. Paskaleva, P. Jančovič, J. Dérer, J. Fedor, A. Rosová, E. Dobročka, and K. Fröhlich, Thin Sol. Films 563, 10 (2014).

    Article  ADS  Google Scholar 

  56. L. Alekseeva, T. Nabatame, T. Chikyow, and A. Petrov, Jpn. J. Appl. Phys. 55, 08PB02 (2016).

    Article  Google Scholar 

  57. Yu. V. Khrapovitskaya, N. E. Maslova, Yu. V. Grishchenko, V. A. Demin, and M. L. Zanaveskin, Tech. Phys. Lett. 40, 317 (2014)

    Article  ADS  Google Scholar 

  58. A. V. Emel’yanov, V. A. Demin, I. M. Antropov, G. I. Tselikov, Z. V. Lavrukhina, and P. K. Kashkarov, Tech. Phys. 60, 112 (2015).

    Article  Google Scholar 

  59. D. I. Aladashvili, Z. A. Adamiya, K. G. Lavdovskii, E. I. Levin, and B. I. Shklovskii, Sov. Phys. Semicond. 23, 132 (1989).

    Google Scholar 

  60. M. Pollak and J. J. Hauser, Phys. Rev. Lett. 31, 1304 (1973)

    Article  ADS  Google Scholar 

  61. M. E. Raikh and I. M. Ruzin, JETP Lett. 43, 562 (1986).

    ADS  Google Scholar 

  62. O. G. Udalov, N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov, Phys. Rev. B 89, 054203 (2014).

    Article  ADS  Google Scholar 

  63. L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Phys. Solid State 44, 1889 (2002)

    Article  ADS  Google Scholar 

  64. L. V. Lutsev, T. K. Zvonarev, and V. M. Lebedev, Tech. Phys. Lett. 27, 659 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rylkov.

Additional information

Original Russian Text © V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasiliev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 3, pp. 424–441.

† Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rylkov, V.V., Nikolaev, S.N., Demin, V.A. et al. Transport, Magnetic, and Memristive Properties of a Nanogranular (CoFeB) x (LiNbO y )100–x Composite Material. J. Exp. Theor. Phys. 126, 353–367 (2018). https://doi.org/10.1134/S1063776118020152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118020152

Navigation