Skip to main content
Log in

Соllective Fluorescence of Composite Nanoparticles

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Fluorescence of a suspension of spherical nanoparticles consisting of a gold core surrounded by silicon dioxide doped with fluorescein molecules is experimentally studied. The model of a composite nanoparticle is investigated theoretically and experimentally, taking into account polarization fluctuations. It is shown that a local nonlinear feedback in the system leads to characteristic temperature dependences of the fluorescence linewidth and intensity. As the medium was cooled from room temperature to liquid nitrogen temperature, the fluorescence spectrum narrowed and its intensity strongly increased. A comparison of experimental data with numerical calculations showed that the changes observed in experiments are not explained by the temperature dependence of the parameters of elements of a nanoparticle. The analysis of the dynamics of polarization phases of dye molecules showed that the synergetic effect should be taken into account, which forms the basis of plasmon–polariton superradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).

    Book  Google Scholar 

  2. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).

    Google Scholar 

  3. E. S. Andrianov, A. P. Vinogradov, A. V. Dorofeenko, A. A. Zyablovskii, A. A. Lisyanskii, and A. A. Pukhov, Quantum Nanoplasmonics (Intellekt, Dolgoprudnyi, 2015) [in Russian].

    Google Scholar 

  4. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, Nat. Commun. 8, 15528 (2017).

    Article  ADS  Google Scholar 

  5. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027401 (2003).

    Article  ADS  Google Scholar 

  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009).

    Article  ADS  Google Scholar 

  7. A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, S. L. Yefimova, Yu. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 118, 7599 (2014).

    Article  Google Scholar 

  8. A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, I. I. Bespalova, S. L. Yefimova, Y. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 119, 2743 (2015).

    Article  Google Scholar 

  9. A. A. Zabolotskii, Optoelectron. Instrum. Data Proc. 52, 388 (2016).

    Article  Google Scholar 

  10. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, Nano Lett. 5, 585 (2005).

    Article  ADS  Google Scholar 

  11. M. Haridas and J. K. Basu, Nanotechnology 21, 415202 (2010).

    Article  ADS  Google Scholar 

  12. M. Haridas, J. K. Basu, A. K. Tiwari, and M. Venkatapathi, J. Appl. Phys. 114, 064305 (2013).

    Article  ADS  Google Scholar 

  13. M. Praveena, A. Mukherjee, M. Venkatapathi, and J. K. Basu, Phys. Rev. B 92, 235403 (2015).

    Article  ADS  Google Scholar 

  14. R. Bonifacio and H. Morawitz, Phys. Rev. Lett. 36, 1559 (1976).

    Article  ADS  Google Scholar 

  15. V. N. Pustovit and T. V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009).

    Article  ADS  Google Scholar 

  16. D. Martin-Cano, L. Martin-Moreno, F. J. Garcna-Vidal, and E. Moreno, Nano Lett. 10, 3129 (2010).

    Article  ADS  Google Scholar 

  17. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  18. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, Berlin, 1985).

    Book  MATH  Google Scholar 

  19. E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, and A. A. Lisyansky, JETP Lett. 97, 452 (2013).

    Article  ADS  Google Scholar 

  20. Chen-To Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Ser. Electromagn. Waves (IEEE, New York, 1994).

    Google Scholar 

  21. O. Svelto, Principles of Lasers (Springer, New York, 1998).

    Book  Google Scholar 

  22. W. E. Lawrence, Phys. Rev. B 13, 5316 (1976).

    Article  ADS  Google Scholar 

  23. T. Holstein, Ann. Phys. 29, 410 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  24. J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, Nano Lett. 12, 1561 (2012).

    Article  ADS  Google Scholar 

  25. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zabolotskii.

Additional information

Original Russian Text © A.A. Zabolotskii, A.S. Kuch’yanov, F.A. Benimetskii, A.I. Plekhanov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 2, pp. 210–219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, A.A., Kuch’yanov, A.S., Benimetskii, F.A. et al. Соllective Fluorescence of Composite Nanoparticles. J. Exp. Theor. Phys. 126, 174–182 (2018). https://doi.org/10.1134/S1063776118020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118020097

Navigation