Skip to main content
Log in

Investigation of a nonequilibrium polariton condensate in cylindrical micropillars in a strong magnetic field

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the photoluminescence of a nonequilibrium polariton condensate in cylindrical micropillars etched on the surface of a high-Q GaAs microcavity in a wide range of detunings in a magnetic field up to 12 T for various levels of nonresonant laser pumping by nanosecond pulses. With such a method of excitation, a considerable effect of the interaction of the reservoir of photoexcited excitons with the condensate on the Zeeman splitting of the polariton condensate levels can be expected, which can lead to a decrease in its value and even to sign reversal. However, the measurements of photoluminescence in a wide range of optical excitation densities show that Zeeman splitting weakly depends on the optical pumping (its variation does not exceed 15% of the splitting in a field of 12 T). The estimation of the exciton density in the reservoir based on these data gives a value lower than 108 cm–2. In addition, a noticeable decrease (by a factor of about 1.8) in the polariton condensation threshold in a magnetic field is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. G. Rubo, A. V. Kavokin, and I. A. Shelykh, Phys. Lett. A 358, 227 (2006).

    Article  ADS  Google Scholar 

  2. A. V. Larionov, V. D. Kulakovskii, S. Hoeffling, C. Schneider, L. Worschech, and A. Forchel, Phys. Rev. Lett. 105, 256401 (2010).

    Article  ADS  Google Scholar 

  3. P. Walker, T. C. H. Liew, D. Sarkar, M. Durska, A. P. D. Love, M. S. Skolnick, J. S. Roberts, I. A. Shelykh, A. V. Kavokin, and D. N. Krizhanovskii, Phys. Rev. Lett. 106, 257401 (2011).

    Article  ADS  Google Scholar 

  4. J. Fischer, S. Brodbeck, A. V. Chernenko, I. Lederer, A. Rahimi-Iman, M. Amthor, V. D. Kulakovskii, M. Kamp, M. Durnev, A. V. Kavokin, and S. Hoefling, Phys. Rev. Lett. 112, 093902 (2014).

    Article  ADS  Google Scholar 

  5. V. D. Kulakovskii, A. V. Larionov, S. Brichkin, C. Schneider, S. Hoefling, M. Kamp, A. Forchel, and N. A. Gippius, in Proceedings of the 20th International Conference on High Magnetic Fields in Semiconductor, HMF-20, Chamonix Mont-Blanc, France, July 22–27, 2012.

    Google Scholar 

  6. C. Sturm, D. Solnyshkov, O. Krebs, A. Lemaıtre, I. Sagnes, E. Galopin, A. Amo, G. Malpuech, and J. Bloch, Phys. Rev. B 91, 155130 (2015).

    Article  ADS  Google Scholar 

  7. M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, Phys. Rev. B 91, 081404(R) (2015).

    Article  ADS  Google Scholar 

  8. L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaıtre, G. Malpuech, and J. Bloch, Phys. Rev. Lett. 106, 126401 (2011).

    Article  ADS  Google Scholar 

  9. T. A. Fisher, A. M. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. B 53, R10469 (1996).

    Article  ADS  Google Scholar 

  10. P. Stepnicki, B. Pietka, F. Morier-Genoud, B. Deveaud, and M. Matuszewski, Phys. Rev. B 91, 195302 (2015).

    Article  ADS  Google Scholar 

  11. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, Nature (London) 497, 348 (2013).

    Article  ADS  Google Scholar 

  12. V. D. Kulakovskii, A. S. Brichkin, S. V. Novikov, C. Schneider, S. Hoefling, M. Kamp, A. Forchel, and N. A. Gippius, Phys. Rev. B 85, 155322 (2012).

    Article  ADS  Google Scholar 

  13. T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, Phys. Rev. B 57, 9950 (1998).

    Article  ADS  Google Scholar 

  14. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Clarendon, Oxford, 2006).

    Google Scholar 

  15. A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Hoefling, M. Kamp, and A. Forchel, Phys. Rev. B 84, 195301 (2011).

    Article  ADS  Google Scholar 

  16. R. Zimmerman, K. Kiijmann, W. D. Kraeft, D. Kremp, and G. Ropke, Phys. Status Solidi B 90, 175 (1978).

    Article  ADS  Google Scholar 

  17. L. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  18. V. D. Kulakovskii, A. V. Larionov, S. I. Novikov, S. Hoefling, Ch. Schneider, and A. Forchel, JETP Lett. 92, 595 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernenko.

Additional information

Original Russian Text © A.S. Brichkin, S.I. Novikov, A.V. Chernenko, C. Schneider, S. Hoefling, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 5, pp. 883–890.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brichkin, A.S., Novikov, S.I., Chernenko, A.V. et al. Investigation of a nonequilibrium polariton condensate in cylindrical micropillars in a strong magnetic field. J. Exp. Theor. Phys. 124, 751–757 (2017). https://doi.org/10.1134/S1063776117040021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117040021

Navigation