Skip to main content
Log in

Electron–positron pair production from vacuum in the field of high-intensity laser radiation

  • Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The works dealing with the theory of e + e pair production from vacuum under the action of highintensity laser radiation are reviewed. The following problems are discussed: pair production in a constant electric field E and time-variable homogeneous field E(t); the dependence of the number of produced pairs \({N_{{e^ + }{e^ - }}}\) on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a focused laser pulse, which is based on exact solution of Maxwell’s equations and contains parameters such as focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model is used to calculate \({N_{{e^ + }{e^ - }}}\) for both a single laser pulse (n = 1) and several (n ≥ 2) coherent pulses with a fixed total energy that simultaneously “collide” in a laser focus. It is shown that, at n ≫ 1, the number of pairs increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser field by the vapors that are generated in vacuum, its “depletion,” and the limiting fields to be achieved in laser experiments are considered. The relation between pair production, the problem of a quantum frequency-variable oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imaginary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is developed and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely, atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function of laser radiation intensity (F and ellipticity ρ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. A. M. Dirac, Prog. R. Soc. London A 117, 610 (1928), Prog. R. Soc. London A 118, 351 (1928).

    Article  ADS  Google Scholar 

  2. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).

    MATH  Google Scholar 

  3. W. Gordon, Z. Phys. 48, 11 (1928).

    Article  ADS  Google Scholar 

  4. C. G. Darwin, Prog. R. Soc. London, Ser. A 118, 654 (1928).

    Article  ADS  Google Scholar 

  5. A. Sommerfeld, Atombau und Spektrallinien (Vieweg, Braunschweig, 1939), Vol. 2.

    MATH  Google Scholar 

  6. F. Sauter, Z. Phys. 69, 742 (1930); Z. Phys. 73, 547 (1931).

    Article  ADS  Google Scholar 

  7. A. Calogeracos and N. Dombey, Contemp. Phys. 40, 313 (1999).

    Article  ADS  Google Scholar 

  8. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Article  ADS  Google Scholar 

  9. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. S. Vanyashin and M. V. Terent’ev, Sov. Phys. JETP 21, 375 (1965).

    ADS  MathSciNet  Google Scholar 

  11. A. I. Nikishov, Tr. FIAN 111, 152 (1979).

    MathSciNet  Google Scholar 

  12. V. Yanovsky, V. Chvykov, G. Kalinchenko, et al., Opt. Express 16, 2109 (2008).

    Article  ADS  Google Scholar 

  13. J. Andruszkow, B. Aunte, V. Ayvazyan, et al., Phys. Rev. Lett. 85, 3825 (2000).

    Article  ADS  Google Scholar 

  14. T. Shintake, H. Tanaka, T. Hara, et al., Nature Photon. 2, 555 (2008).

    Article  Google Scholar 

  15. P. Emma, R. Arke, J. Arthur, et al., Nature Photon. 4, 641 (2010).

    Article  ADS  Google Scholar 

  16. L. Young, E. P. Kanter, B. Krässig, et al., Nature 466, 56 (2010).

    Article  ADS  Google Scholar 

  17. European Project on Extreme Light Infrastructure. http://www. extreme-light-infrastructureeu

  18. Exawatt Center for Extreme Light Studies (XCELS) on the Base of Institute of Applied Physics of RA S. http://wwwxcelsiaprasru

  19. International Center for Zetta-Exawatt Science and Technology (IZEST). http://wwwizestpolytechniqueedu

  20. G. V. Dunne, Eur. Phys. J. Spec. Top. 223, 1055 (2014).

    Article  Google Scholar 

  21. G. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  22. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  23. N. B. Narozhny and A. M. Fedotov, Eur. Phys. J. Spec. Top. 223, 1083 (2014).

    Article  Google Scholar 

  24. A. Ringwald, Phys. Lett. B 510, 107 (2001).

    Article  ADS  Google Scholar 

  25. R. Alkofer, M. B. Hecht, C. D. Roberts, et al., Phys. Rev. Lett. 87, 193902 (2001).

    Article  ADS  Google Scholar 

  26. N. B. Narozhny and A. M. Fedotov, Contemp. Phys. 56, 249 (2015).

    Article  ADS  Google Scholar 

  27. B. M. Karnakov, V. D. Mur, S. V. Popruzhenko, and V. S. Popov, Phys. Usp. 58, 3 (2015).

    Article  ADS  Google Scholar 

  28. V. S. Popov, JETP Lett. 13, 185 (1971).

    ADS  Google Scholar 

  29. V. S. Popov, Sov. Phys. JETP 34, 709 (1971).

    ADS  Google Scholar 

  30. V. S. Popov, Phys. Usp. 43, 211 (2000).

    Article  ADS  Google Scholar 

  31. V. S. Popov, Phys. Usp. 47, 855 (2004).

    Article  ADS  Google Scholar 

  32. V. S. Popov, JETP Lett. 74, 133 (2001)

    Article  ADS  Google Scholar 

  33. V. S. Popov, J. Exp. Theor. Phys. 94, 1057 (2002).

    Article  ADS  Google Scholar 

  34. V. S. Popov, Phys. Lett. A 218, 83 (2002); in I. Ya. Pomeranchuck and Physics at the Turn of Centures (World Scientific, Singapore, 2003), p. 496.

    Article  ADS  Google Scholar 

  35. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).

    MathSciNet  Google Scholar 

  36. Special Issue on 50 Years of Optical Tunneling, J. Phys. B 47 (20) (2015).

  37. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

    ADS  Google Scholar 

  38. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 24, 207 (1966).

    ADS  Google Scholar 

  39. V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Sov. Phys. JETP 26, 222 (1967).

    ADS  Google Scholar 

  40. L. D. Landau, Phys. Zs. Sowjet. 1, 88 (1932).

    Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  42. N. B. Narozhny, S. V. Bulanov, V. D. Mur, and V. S. Popov, Phys. Lett. A 330, 1 (2004).

    Article  ADS  Google Scholar 

  43. V. S. Popov, V. D. Mur, B. M. Karnakov, and S. G. Pozdnyakov, Phys. Lett. A 358, 21 (2006).

    Article  ADS  Google Scholar 

  44. V. S. Popov, Phys. At. Nucl. 68, 686 (2005).

    Article  Google Scholar 

  45. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1975).

    Google Scholar 

  46. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon Press, New York, 1988).

    Google Scholar 

  47. V. D. Mur, B. M. Karnakov, and V. S. Popov, J. Exp. Theor. Phys. 87, 433 (1998).

    Article  ADS  Google Scholar 

  48. B. M. Karnakov, V. D. Mur, and V. S. Popov, J. Exp. Theor. Phys. 105, 292 (2007).

    Article  ADS  Google Scholar 

  49. V. S. Popov, V. D. Mur, and B. M. Karnakov, JETP Lett. 66, 229 (1997).

    Article  ADS  Google Scholar 

  50. Yu. N. Demkov and G. F. Drukarev, Sov. Phys. JETP 20, 614 (1964).

    Google Scholar 

  51. V. S. Popov, V. D. Mur, B. M. Karnakov, and S. G. Pozdnyakov, J. Exp. Theor. Phys. 102, 760 (2006).

    Article  ADS  Google Scholar 

  52. E. Brezin and C. Itzikson, Phys. Rev. D 2, 1191 (1970).

    Article  ADS  Google Scholar 

  53. L. V. Keldysh, private communication (2001).

    Google Scholar 

  54. E. Yahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGrawHill, New York, 1960, Nauka, Moscow, 1977).

    Google Scholar 

  55. N. B. Narozhny and A. I. Nikishov, Sov. J. Nucl. Phys. 11, 596 (1970).

    Google Scholar 

  56. L. V. Keldysh, Sov. Phys. JETP 6, 763 (1957).

    ADS  Google Scholar 

  57. W. Franz, Z. Naturwiss. 13a, 484 (1958).

    ADS  Google Scholar 

  58. N. B. Narozhny and M. S. Fofanov, J. Exp. Theor. Phys. 90, 415 (2000).

    Article  ADS  Google Scholar 

  59. S. S. Bulanov, N. B. Narozhny, V. D. Mur, and V. S. Popov, J. Exp. Theor. Phys. 102, 9 (2006).

    Article  ADS  Google Scholar 

  60. S. S. Bulanov, V. D. Mur, N. B. Narozhny, et al., Phys. Rev. Lett. 104, 220404 (2010).

    Article  ADS  Google Scholar 

  61. V. S. Popov, Doctoral (Phys. Math.) Dissertation (Inst. Theor. Exp. Phys., Moscow, 1974).

    Google Scholar 

  62. C. Eckart, Phys. Rev. 35, 1303 (1930).

    Article  ADS  Google Scholar 

  63. V. S. Popov and A. M. Perelomov, Sov. Phys. JETP 29, 738 (1969).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Popruzhenko.

Additional information

Contribution for the JETP special issue in honor of L.V. Keldysh’s 85th birthday

Original Russian Text © V.S. Popov, V.D. Mur, N.B. Narozhnyi, S.V. Popruzhenko, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 3, pp. 623–640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.S., Mur, V.D., Narozhnyi, N.B. et al. Electron–positron pair production from vacuum in the field of high-intensity laser radiation. J. Exp. Theor. Phys. 122, 539–553 (2016). https://doi.org/10.1134/S1063776116030171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116030171

Keywords

Navigation