Skip to main content
Log in

Undulator superradiance effect and its applicability for the generation of multimegawatt terahertz pulses

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The generation of multimegawatt terahertz pulses based on the superradiance of picosecond electron bunches moving in a periodic magnetic (undulator) field is shown to be possible. The theoretical study of superradiance processes is based both on the method of an averaged ponderomotive force and on direct numerical PIC (particle in cell) simulations. The analysis is performed in the K′ reference frame comoving with the electrons followed by the recalculation of radiation characteristics to the laboratory frame using the Lorentz transformations. Within the framework of the averaged approach, the electron bunch is represented as an ensemble of macroelectrons interacting between themselves through the radiation fields and Coulomb forces. The superradiance effect includes particle bunching followed by coherent emission of a single intense pulse from the entire volume of an electron bunch whose length exceeds considerably the wavelength. PIC simulations of this process based on the KARAT code have been performed for a more detailed analysis including the transverse inhomogeneity of the undulator field, the relativistic pattern of electron motion in this field, etc. A considerable simplification of the calculation procedure when passing to the comoving reference frame due to the commensurability of all spatial scales, including the radiation wavelength, the bunch length, and the length of the train of the pump wave into which the undulator field is transformed, is shown to be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. S. Ginzburg, A. S. Sergeev, I. V. Zotova, I. V. Zotova, A. S. Sergeev, I. V. Konoplev, A. D. R. Phelps, A. W. Cross, S. J. Cooke, V. G. Shpak, M. I. Yalandin, S. A. Shunailov, and M. R. Ulmaskulov, Phys. Rev. Lett. 78, 2365 (1997).

    Article  ADS  Google Scholar 

  2. N. S. Ginzburg, Yu. V. Novozhilova, A. S. Sergeev, N. Yu. Novozhilova, I. V. Zotova, A. S. Sergeev, N. Yu. Peskov, A. D. R. Phelps, S. M. Wiggins, A. W. Cross, K. Ronald, W. He, V. G. Shpak, M. I. Yalandin, S. A. Shunailov, M. R. Ulmaskulov, and V. P. Tarakanov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 3297 (1999).

    Article  Google Scholar 

  3. A. A. El’chaninov, S. D. Korovin, V. V. Rostov, I. V. Pegel’, G. A. Mesyats, M. I. Yalandin, and N. S. Ginzburg, JETP Lett. 77(6), 266 (2003).

    Article  ADS  Google Scholar 

  4. A. A. El’chaninov, A. I. Klimov, O. B. Koval’chuk, G. A. Mesyats, I. V. Pegel’, I. V. Romanchenko, V. V. Rostov, K. A. Sharypov, and M. I. Yalandin, Tech. Phys. 56(1), 121 (2011).

    Article  Google Scholar 

  5. N. S. Ginzburg and A. S. Sergeev, JETP Lett. 54(8), 446 (1991).

    ADS  Google Scholar 

  6. N. S. Ginzburg, A. S. Sergeev, and A. M. Malkin, J. Exp. Theor. Phys. 96(5), 904 (2003).

    Article  ADS  Google Scholar 

  7. R. H. Bonifacio, C. Maroli, and N. Piovella, Opt. Commun. 68, 369 (1988).

    Article  ADS  Google Scholar 

  8. R. H. Bonifacio, N. Piovella, and B. W. J. McNeil, Phys. Rev. A: At., Mol., Opt. Phys. 44, 3441 (1991).

    Article  ADS  Google Scholar 

  9. G. R. M. Robb, N. S. Ginzburg, A. D. R. Phelps, and A. S. Sergeev, Phys. Rev. Lett. 77, 1492 (1996).

    Article  ADS  Google Scholar 

  10. J. G. Power, in AIP Conf. Proc. 1299, 20 (2010).

    Article  ADS  Google Scholar 

  11. P. Piot, Y. Sun, and K. Kim, Phys. Rev. Spec. Top.—Accel. Beams 9, 031001 (2006).

    Article  ADS  Google Scholar 

  12. V. P. Tarakanov, User’s Manual for Code KARAT (Berkeley Research Associates, Springfield, Virginia, United States, 1992).

    Google Scholar 

  13. N. S. Ginzburg, I. V. Zotova, A. M. Malkin, and V. P. Tarakanov, Tech. Phys. Lett. 38(6), 531 (2012).

    Article  ADS  Google Scholar 

  14. J. L. Vay, Phys. Rev. Lett. 98, 130405 (2007).

    Article  ADS  Google Scholar 

  15. C. G. R. Geddes, D. L. Bruhwiler, J. R. Cary, W. B. Mori, J.-L. Vay, S. F. Martins, T. Katsouleas, E. Cormier-Michel, W. M. Fawley, C. Huang, X. Wang, B. Cowan, V. K. Decyk, E. Esarey, R. A. Fonseca, W. Lu, P. Messmer, P. Mullowney, K. Nakamura, K. Paul, G. R. Plateau, C. B. Schroeder, L. O. Silva, C. Toth, F. S. Tsung, M. Tzoufras, T. Antonsen, J. Vieira, and W. P. Leemans, J. Phys.: Conf. Ser. 125, 12002 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zotova.

Additional information

Original Russian Text © N.S. Ginzburg, A.A. Golovanov, I.V. Zotova, A.M. Malkin, V.P. Tarakanov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 4, pp. 720–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, N.S., Golovanov, A.A., Zotova, I.V. et al. Undulator superradiance effect and its applicability for the generation of multimegawatt terahertz pulses. J. Exp. Theor. Phys. 119, 632–640 (2014). https://doi.org/10.1134/S1063776114100021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114100021

Keywords

Navigation