Skip to main content
Log in

Applying an improved phonon confinement model to the analysis of Raman spectra of germanium nanocrystals

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The improved phonon confinement model developed previously [11] is applied for definition of germanium nanocrystal sizes from the analysis of its Raman scattering spectra. The calculations based on the model allow determining the sizes of germanium nanocrystals more precisely from the analysis of their Raman spectra. In some cases, the comparative analysis of Raman data and electron microscopy data is carried out, and good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ekimov and A. A. Onushchenko, JETP Lett. 34(6), 345 (1981).

    ADS  Google Scholar 

  2. S. Furukawa and T. Miyasato, Phys. Rev. B: Condens. Matter 38, 5726 (1988).

    Article  ADS  Google Scholar 

  3. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, Phys. Rev. Lett. 94, 087405 (2005).

    Article  ADS  Google Scholar 

  4. H. Richter, Z. P. Wang, and L. Lay, Solid State Commun. 39, 625 (1981).

    Article  ADS  Google Scholar 

  5. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  6. V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn, and F. Huisken, J. Appl. Phys. 86(4), 1921 (1999).

    Article  ADS  Google Scholar 

  7. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and Salvo La Rosa, Phys. Rev. B: Condens. Matter 73(3), 033307 (2006).

    Article  ADS  Google Scholar 

  8. P. Miska, M. Dossot, T. D. Nguyen, M. Grün, H. Rinnert, M. Vergnat, and B. Humbert, J. Phys. Chem. C 114(41), 17344 (2010).

    Article  Google Scholar 

  9. I. F. Crowe, M. P. Halsall, O. Hulko, A. P. Knights, R. M. Gwilliam, M. Wojdak, and A. J. Kenyon, J. Appl. Phys. 109(8), 083534 (2011).

    Article  ADS  Google Scholar 

  10. G. Faraci, S. Gibilisco, A. R. Pennisi, and C. Faraci, J. Appl. Phys. 109, 074311 (2011).

    Article  ADS  Google Scholar 

  11. V. A. Volodin and V. A. Sachkov, J. Exp. Theor. Phys. 116(1), 87 (2013).

    Article  ADS  Google Scholar 

  12. M. Fujii, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 57, 2692 (1990).

    Article  ADS  Google Scholar 

  13. X. L. Wu, T. Gao, X. M. Bao, F. Yan, S. S. Jiang, and D. Feng, J. Appl. Phys. 82(5), 2704 (1997).

    Article  ADS  Google Scholar 

  14. A. Wellner, V. Paillard, C. Bonafos, H. Coffin, A. Claverie, B. Schmidt, and K. H. Heinig, J. Appl. Phys. 94(9), 5639 (2003).

    Article  ADS  Google Scholar 

  15. E. B. Gorokhov, V. A. Volodin, D. V. Marin, D. A. Orekhov, A. G. Cherkov, A. K. Gutakovskii, V. A. Shvets, A. G. Borisov, and M. D. Efremov, Semiconductors 39(10), 1168 (2005).

    Article  ADS  Google Scholar 

  16. I. D. Sharp, Q. Xu, D. O. Yi, C. W. Yuan, J. W. Beeman, K. M. Yu, J. W. Ager III, D. C. Chrzan, and E. E. Haller, J. Appl. Phys. 100(11), 114317 (2006).

    Article  ADS  Google Scholar 

  17. S. R. C. Pinto, A. G. Rolo, A. Chahboun, R. J. Kashtiban, U. Bangert, and M. J. M. Gomes, Thin Solid Films 518(19), 5378 (2010).

    Article  ADS  Google Scholar 

  18. J. E. Chang, P. H. Liao, C. Y. Chien, J. C. Hsu, M. T. Hung, H. T. Chang, S. W. Lee, W. Y. Chen, T. M. Hsu, Tom George, and P. W. Li, J. Phys. D: Appl. Phys. 45(10), 105303 (2012).

    Article  ADS  Google Scholar 

  19. Quantum Dots: Research, Technology, and Applications—Ge Nanoclusters in GeO 2 Films: Synthesis, Structural Researches, and Optical Properties, Ed. by R. W. Knoss (Nova Science, New York, 2008).

    Google Scholar 

  20. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, Appl. Phys. Lett. 89, 011902 (2006).

    Article  ADS  Google Scholar 

  21. M. Ardyanian, H. Rinnert, and M. Vergnat, J. Appl. Phys. 100, 113106 (2006).

    Article  ADS  Google Scholar 

  22. V. A. Volodin, D. V. Marin, H. Rinnert, and M. Vergnat, J. Phys. D: Appl. Phys. D 46, 275305 (2013).

    Article  ADS  Google Scholar 

  23. Shang-Fen Ren and Wei Cheng, Phys. Rev. B: Condens. Matter 66, 205328 (2002).

    Article  ADS  Google Scholar 

  24. K. H. Khoo, A. T. Zayak, H. Kwak, and J. R. Chelikowsky, Phys. Rev. Lett. 105, 115504 (2010).

    Article  ADS  Google Scholar 

  25. P. N. Keating, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  26. G. Nelin and G. Nilsson, Phys. Rev. B: Solid State 5, 3151 (1972); G. Nelin and G. Nilsson, Phys. Rev. B: Solid State 6, 3777 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volodin, V.A., Marin, D.V., Sachkov, V.A. et al. Applying an improved phonon confinement model to the analysis of Raman spectra of germanium nanocrystals. J. Exp. Theor. Phys. 118, 65–71 (2014). https://doi.org/10.1134/S1063776114010208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114010208

Keywords

Navigation