Skip to main content
Log in

On the propagation of hypersonic solitons in a strained paramagnetic crystal

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Nonlinear dynamics of a subnanosecond transverse elastic pulse in a low-temperature paramagnetic crystal placed into a magnetic field and statically strained in the same direction is investigated. Paramagnetic impurities implanted into the crystal have an effective spin of 3/2, and the pulse propagates at right angles to the magnetic field. In the general case, the structure of the pulse is such that the approximation of slowly varying envelopes, which is standard for quasi-monochromatic signals, is inapplicable. Under certain conditions, the pulse propagation in the 1D case is described by the Konno-Kameyama-Sanuki integrable wave equation for strain, which is transformed into the Hirota equation for the envelope of the given strain in the quasi-monochromatic limit. The effect of transverse perturbations on extremely short and quasi-monochromatic solitons is studied in detail. The conditions and features of self-focusing and defocusing of acoustic solitons in the form of extremely short pulses and envelope solitons are revealed. The propagation of an extremely short “half-wave” hypersonic pulse in the “acoustic bullet” regime in the medium with a quasiequilibrium population of quantum sublevels of effective spins is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov and V. E. Gusev, Sov. Phys.—Usp. 35(3), 153 (1992).

    Article  ADS  Google Scholar 

  2. H.-Y. Hao and H. J. Maris, Phys. Rev. B: Condens. Matter 64, 064302 (2001).

    Article  ADS  Google Scholar 

  3. J. Tucker and R. Rampton, Microwave Ultrasonics Solid State (North-Holland, Amsterdam, The Netherlands, 1971; Mir, Moscow, 1975).

    Google Scholar 

  4. V. V. Lemanov and G. A. Smolenskii, Sov. Phys.—Usp. 15(6), 708 (1973).

    Article  ADS  Google Scholar 

  5. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988; American Institute of Physics, New York, 1997).

    Google Scholar 

  6. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  7. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  8. H. Leblond and D. Mihalache, Phys. Rep. 523, 61 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. V. Bunkin, Yu. A. Kravtsov, and G. A. Lyakhov, Sov. Phys.—Usp. 29(7), 607 (1986).

    Article  ADS  Google Scholar 

  10. S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).

    Article  ADS  Google Scholar 

  11. N. S. Shiren, Phys. Rev. B: Solid State 2, 2471 (1970).

    Article  ADS  Google Scholar 

  12. G. A. Denisenko, Sov. Phys. JETP 33(6), 1215 (1971).

    ADS  Google Scholar 

  13. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov, JETP Lett. 20(10), 296 (1974).

    ADS  Google Scholar 

  14. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; American Institute of Physics, New York, 1992).

    Google Scholar 

  15. S. V. Sazonov, J. Phys.: Condens. Matter 4, 6485 (1992).

    ADS  Google Scholar 

  16. S. V. Sazonov, J. Phys.: Condens. Matter 6, 6295 (1994).

    ADS  Google Scholar 

  17. S. V. Voronkov and S. V. Sazonov, JETP 92(2), 236 (2001).

    Article  ADS  Google Scholar 

  18. A. A. Zabolotskii, JETP 96(6), 1089 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. A. Zabolotskii, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 066606 (2003).

    Article  Google Scholar 

  20. A. A. Zabolotskii, Physica D (Amsterdam) 185, 1239 (2003).

    MathSciNet  Google Scholar 

  21. S. V. Sazonov and N. V. Ustinov, JETP 102(5), 741 (2006).

    Article  ADS  Google Scholar 

  22. S. V. Sazonov and N. V. Ustinov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 056614 (2006).

    Article  ADS  Google Scholar 

  23. A. A. Zabolotskii, JETP 105(2), 439 (2007).

    Article  ADS  Google Scholar 

  24. S. V. Sazonov and N. V. Ustinov, Theor. Math. Phys. 151(2), 632 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. V. Sazonov and N. V. Ustinov, J. Phys. A: Math. Gen. 40, F551 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. S. V. Sazonov and N. V. Ustinov, Theor. Math. Phys. 164(2), 1016 (2010).

    Article  MathSciNet  Google Scholar 

  27. A. N. Bugai and S. V. Sazonov, JETP 112(3), 401 (2011).

    Article  ADS  Google Scholar 

  28. V. A. Semenov, D. A. Dubovsky, and A. V. Orlov, Crystallogr. Rep. 56(7), 1149 (2011).

    Article  ADS  Google Scholar 

  29. O. A. Dubovskii and A. V. Orlov, JETP Lett. 96(7), 461 (2012).

    Article  ADS  Google Scholar 

  30. S. V. Sazonov and N. V. Ustinov, JETP 114(4), 645 (2012).

    Article  ADS  Google Scholar 

  31. O. A. Dubovsky, V. A. Semenov, and A. V. Orlov, Phys. Solid State 55(2), 396 (2013).

    Article  ADS  Google Scholar 

  32. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibullin, Magnetic Quantum Acoustics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  33. E. Tucker, in Physical Acoustics: Principles and Methods, Ed. by W. P. Mason (Academic, New York, 1966; Mir, Moscow, 1969), Vol. 4, Part A, Chapt. 2.

  34. E. B. Tucker, Phys. Rev. Lett. 6, 183 (1961).

    Article  ADS  Google Scholar 

  35. C. Kittel, Phys. Rev. Lett. 6, 449 (1961).

    Article  ADS  Google Scholar 

  36. U. Kh. Kopvillem and V. D. Korepanov, Sov. Phys. Solid State 3, 1464 (1961).

    Google Scholar 

  37. S. V. Sazonov, JETP 109(1), 57 (2009).

    Article  ADS  Google Scholar 

  38. S. V. Sazonov, JETP 91(1), 16 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  39. E. M. Belenov and A. V. Nazarkin, JETP Lett. 51(5), 288 (1990).

    ADS  Google Scholar 

  40. E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Sov. Phys. JETP 73(3), 422 (1991).

    Google Scholar 

  41. N. S. Buinov, V. R. Nagibarov, and N. K. Solovarov, Ukr. Fiz. Zh. 22, 151 (1977).

    Google Scholar 

  42. K. Konno, W. Kameyama, and H. J. Sanuki, J. Phys. Soc. Jpn. 37, 171 (1974).

    Article  ADS  Google Scholar 

  43. A. M. Kosevich and A. S. Kovalev, Solid State Commun. 12, 763 (1973).

    Article  ADS  Google Scholar 

  44. S. V. Sazonov, Phys.—Usp. 44(6), 631 (2001).

    Article  ADS  Google Scholar 

  45. A. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley, New York, 1970; Sovetskoe Radio, Moscow, 1977).

    Google Scholar 

  46. M. Desaix, D. Anderson, and M. Lisak, J. Opt. Soc. Am. B 8, 2082 (1991).

    Article  ADS  Google Scholar 

  47. S. K. Zhdanov and B. A. Trubnikov, Sov. Phys. JETP 65(5), 904 (1987).

    Google Scholar 

  48. S. K. Zhdanov and B. A. Trubnikov, Quasi-Gaseous Unstable Media (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  49. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 6: Fluid Mechanics (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1989).

    Google Scholar 

  50. N. V. Karlov and N. A. Kirichenko, Vibrations, Waves, and Structures (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  51. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys.—Usp. 10(5), 609 (1967).

    Article  ADS  Google Scholar 

  52. N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1020 (1973).

    Google Scholar 

  53. V. E. Zakharov and E. A. Kuznetsov, Phys.—Usp. 55(6), 535 (2012).

    Article  ADS  Google Scholar 

  54. S. V. Sazonov, Kvantovaya Elektron. 37, 29 (2007).

    Article  Google Scholar 

  55. S. V. Sazonov, JETP 92(3), 361 (2001).

    Article  ADS  Google Scholar 

  56. H. Leblond, S. V. Sazonov, I. V. Mel’nikov, D. Mihalache, and F. Sanchez, Phys. Rev. A: At., Mol., Opt. Phys. 74, 063815 (2006).

    Article  ADS  Google Scholar 

  57. I. C. Eilbeck, I. D. Gibbon, P. J. Caudrey, and R. K. Bullough, J. Phys. A: Math., Nucl. Gen. 6, 1337 (1973).

    Article  ADS  Google Scholar 

  58. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sazonov.

Additional information

Original Russian Text © S.V. Sazonov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 5, pp. 1016–1035.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazonov, S.V. On the propagation of hypersonic solitons in a strained paramagnetic crystal. J. Exp. Theor. Phys. 117, 885–902 (2013). https://doi.org/10.1134/S1063776113130062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113130062

Keywords

Navigation