Skip to main content
Log in

Temperature-induced transformations in hydrogenated and fluorinated single-wall carbon nanotubes studied by Raman scattering

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Raman spectra of hydrogenated and fluorinated single-wall carbon nanotubes (SWCNTs) are measured at ambient temperature before and after heat treatment. The spectra of the as-prepared hydrogenated SWCNTs show a giant structureless band in the visible region that screens the Raman peaks related to the carbon atom vibrations. The onset of this strong band follows the excitation laser line, which is typical of hot luminescence. The intensity of the luminescence background decreases exponentially with the annealing time, while the dependence of the luminescence decay time constant on the annealing temperature is of the Arrhenius type with the activation energy E a = 465 ± 44 meV. The luminescence background in the Raman spectra of the fluorinated SWCNTs is comparable with the Raman peak intensity and decreases exponentially with the annealing time. The dependence of the decay time constant on the temperature is again of the Arrhenius type with the activation energy E a = 90 ± 8 meV. The appearance of hot luminescence is related to the upshift of the fundamental energy gap in functionalized SWCNTs and the structural disorder induced by random binding of hydrogen or fluorine atoms. The luminescence background disappears upon annealing in vacuum or in air after removal of hydrogen (fluorine), while the annealed samples still demonstrate large structural disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. V. Frankland and D. W. Brenner, Chem. Phys. Lett. 334, 18 (2001).

    Article  ADS  Google Scholar 

  2. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London) 386, 377 (1997).

    Article  ADS  Google Scholar 

  3. Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 2307 (1999).

    Article  ADS  Google Scholar 

  4. S.-P. Chan, G. Chen, X. G. Gong, and Z.-F. Liu, Phys. Rev. Lett. 87, 205 502 (2001).

    Google Scholar 

  5. I. O. Bashkin, V. E. Antonov, A. V. Bazhenov, I. K. Bdikin, D. N. Borisenko, E. P. Krinichnaya, A. P. Moravsky, A. I. Harkunov, Yu. M. Shul’ga, Yu. A. Ossipyan, and E. G. Ponyatovsky, Pis’ma Zh. Eksp. Teor. Fiz. 79(5), 280 (2004) [JETP Lett. 79 (5), 226 (2004)].

    Google Scholar 

  6. R. Bini, J. Ebenhoch, M. Fanti, P. W. Fowler, S. Leach, G. Orlandi, Ch. Rüchardt, J. P. B. Sandall, and F. Zerbetto, Chem. Phys. 232, 75 (1998).

    Article  Google Scholar 

  7. A. I. Kolesnikov, V. E. Antonov, I. O. Bashkin, G. Grosse, A. P. Moravsky, A. Yu. Muzychka, E. G. Ponyatovsky, and F. E. Wagner, J. Phys.: Condens. Matter 9, 2831 (1997).

    Article  ADS  Google Scholar 

  8. K. P. Meletov, S. Assimopoulos, I. Tsilika, I. O. Bashkin, V. I. Kulakov, S. S. Khasanov, and G. A. Kourouklis, Chem. Phys. 263, 379 (2001).

    Article  Google Scholar 

  9. K. A. Williams, B. K. Pradhan, P. C. Eklund, M. K. Kostov, and M. W. Cole, Phys. Rev. Lett. 88, 165502 (2002).

    Article  ADS  Google Scholar 

  10. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998).

    Article  ADS  Google Scholar 

  11. S. Kawasaki, K. Komatsu, F. Okino, H. Touhara, and H. Kataura, Phys. Chem. Chem. Phys. 6, 1769 (2004).

    Article  Google Scholar 

  12. V. E. Antonov, I. O. Bashkin, S. S. Khasanov, A. P. Moravsky, Yu. G. Morozov, Yu. M. Shulga, Yu. A. Ossipyan, and E. G. Ponyatovsky, J. Alloys Compd. 330, 365 (2002).

    Article  Google Scholar 

  13. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  ADS  Google Scholar 

  14. U. D. Venkateswaran, Phys. Status Solidi B 241, 3345 (2004).

    Article  ADS  Google Scholar 

  15. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 88, 027 401 (2002).

    Article  Google Scholar 

  16. V. W. Brar, Ge. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, Phys. Rev. B: Condens. Matter 66, 155 418 (2002).

    Article  Google Scholar 

  17. Yu. M. Shulga, I. O. Bashkin, A. V. Krestinin, V. M. Martynenko, G. I. Zvereva, I. V. Kondratieva, Yu. A. Ossipyan, and E. G. Ponyatovsky, Pis’ma Zh. Eksp. Teor. Fiz. 80(12), 884 (2004) [JETP Lett. 80 (12), 752 (2004)].

    Google Scholar 

  18. P. E. Pehrsson, W. Zhao, J. W. Baldwin, C. Song, J. Liu, S. Kooi, and B. Zheng, J. Phys. Chem. B 107, 5690 (2003).

    Article  Google Scholar 

  19. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998).

    Article  ADS  Google Scholar 

  20. S. Kawasaki, K. Komatsu, F. Okino, and H. Kataura, Phys. Chem. Chem. Phys. 6, 1769 (2004).

    Article  Google Scholar 

  21. J. Wu, W. Walukiewicz, W. Shan, E. Bourret-Courchesne, J. W. Ager III, K. M. Yu, E. E. Haller, K. Kissell, S. M. Bachilo, R. B. Weisman, and R. E. Smalley, Phys. Rev. Lett. 93, 017 404 (2004).

    Google Scholar 

  22. D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben, and A. Mascarenhas, Phys. Rev. Lett. 96, 106 805 (2006).

    Article  Google Scholar 

  23. K. P. Meletov, S. Assimopoulos, G. A. Kourouklis, and I. O. Bashkin, Fiz. Tverd. Tela 44(3), 519 (2002) [Phys. Solid State 44 (3), 542 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Meletov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meletov, K.P., Maksimov, A.A., Tartakovskii, I.I. et al. Temperature-induced transformations in hydrogenated and fluorinated single-wall carbon nanotubes studied by Raman scattering. J. Exp. Theor. Phys. 112, 979–985 (2011). https://doi.org/10.1134/S1063776111040091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111040091

Keywords

Navigation