Skip to main content
Log in

Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities such as the thermodynamic potential, the one-particle propagator, and the correlation function is established. This relation contains an additional integration of the one-particle propagator with respect to an auxiliary constant. The vacuum skeleton diagrams constructed from the irreducible Green’s functions and tunneling propagator lines are determined and a special functional is introduced. The properties of this functional are investigated and its relation to the thermodynamic potential is established. The stationarity property of this functional with respect to first-order variations of the correlation function is demonstrated; as a consequence, the stationarity property of the thermodynamic potential is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); Proc. R. Soc. London, Ser. A 277, 237 (1964); Proc. R. Soc. London, Ser. A 281, 401 (1964).

    Article  ADS  Google Scholar 

  2. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1993).

    Google Scholar 

  3. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, United Kingdom, 1993).

    Book  Google Scholar 

  4. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 8, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Matsumoto and F. Mancini, Phys. Rev. B: Condens. Matter 55, 2095 (1997).

    ADS  Google Scholar 

  6. A. Avella, F. Mancini, and R. Munzner, Phys. Rev. B: Condens. Matter 63, 245 117 (2001).

    Google Scholar 

  7. G. Kotliar and D. Vollhardt, Phys. Today 57, 53 (2004).

    Article  Google Scholar 

  8. P. M. Slobodyan and I. V. Stasyuk, Teor. Mat. Fiz. 19(3), 423 (1974) [Theor. Math. Phys. 19 (3), 616 (1974)]; Preprint No. 73-136R (Institute of Theoretical Physics, Academy of Sciences of the Ukrainian SSR, Kiev, Soviet Union, 1973) [in Russian].

    Google Scholar 

  9. R. O. Zaitsev, Zh. Éksp. Teor. Fiz. 68, 207 (1974); Preprint No. IAE-2378 (Institute of Atomic Energy, Moscow, 1974).

    Google Scholar 

  10. Yu. A. Izyumov, F. L. Kassan-Ogly, and Y. M. Skryabin, Statistical Mechanics of Magnetically Ordered Systems (Nauka, Moscow, 1987; Consultants Bureau, New York, 1988).

    Google Scholar 

  11. M. I. Vladimir and V. A. Moskalenko, Teor. Mat. Fiz. 82(3), 428 (1990) [Theor. Math. Phys. 82 (3), 301 (1990)].

    Google Scholar 

  12. S. I. Vakaru, M. I. Vladimir, and V. A. Moskalenko, Teor. Mat. Fiz. 85(2), 248 (1990) [Theor. Math. Phys. 85 (2), 1185 (1990)].

    Google Scholar 

  13. N. N. Bogoliubov and V. A. Moskalenko, Teor. Mat. Fiz. 86(1), 16 (1991) [Theor. Math. Phys. 86 (1), 10 (1991)]; Teor. Mat. Fiz. 92 (2), 182 (1992) [Theor. Math. Phys. 92 (2), 820 (1992)]; Dokl. Akad. Nauk SSSR 316, 1107 (1991) [Sov. Phys. Dokl. 36, 160 (1991)]; JINR Rapid Commun. 44, 5 (1990).

    Google Scholar 

  14. W. Metzner, Phys. Rev. B: Condens. Matter 43, 8549 (1991).

    ADS  Google Scholar 

  15. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. V. A. Moskalenko, P. Entel, L. A. Dohotaru, and R. Citro, Teor. Mat. Fiz. 159(1), 154 (2009) [Theor. Math. Phys. 159 (1), 551 (2009)]; arXiv:0804.1651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Moskalenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalenko, V.A., Dohotaru, L.A. & Cebotari, I.D. Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential. J. Exp. Theor. Phys. 111, 97–103 (2010). https://doi.org/10.1134/S1063776110070095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110070095

Keywords

Navigation